NormalizingTransformer.CdfNormalizerModelParameters<TData> クラス
定義
重要
一部の情報は、リリース前に大きく変更される可能性があるプレリリースされた製品に関するものです。 Microsoft は、ここに記載されている情報について、明示または黙示を問わず、一切保証しません。
累積分布正規化変換によって生成されるモデル パラメーター。 累積密度関数は、適合時にStandardDeviation観察されたMeanとおりにパラメーター化されます。
public sealed class NormalizingTransformer.CdfNormalizerModelParameters<TData> : Microsoft.ML.Transforms.NormalizingTransformer.NormalizerModelParametersBase
type NormalizingTransformer.CdfNormalizerModelParameters<'Data> = class
inherit NormalizingTransformer.NormalizerModelParametersBase
Public NotInheritable Class NormalizingTransformer.CdfNormalizerModelParameters(Of TData)
Inherits NormalizingTransformer.NormalizerModelParametersBase
型パラメーター
- TData
- 継承
-
NormalizingTransformer.CdfNormalizerModelParameters<TData>
例
using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;
namespace Samples.Dynamic
{
public class NormalizeLogMeanVariance
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[5] { 1, 1, 3, 0, float.MaxValue } },
new DataPoint(){ Features = new float[5] { 2, 2, 2, 0, float.MinValue } },
new DataPoint(){ Features = new float[5] { 0, 0, 1, 0, 0} },
new DataPoint(){ Features = new float[5] {-1,-1,-1, 1, 1} }
};
// Convert training data to IDataView, the general data type used in
// ML.NET.
var data = mlContext.Data.LoadFromEnumerable(samples);
// NormalizeLogMeanVariance normalizes the data based on the computed
// mean and variance of the logarithm of the data.
// Uses Cumulative distribution function as output.
var normalize = mlContext.Transforms.NormalizeLogMeanVariance(
"Features", useCdf: true);
// NormalizeLogMeanVariance normalizes the data based on the computed
// mean and variance of the logarithm of the data.
var normalizeNoCdf = mlContext.Transforms.NormalizeLogMeanVariance(
"Features", useCdf: false);
// Now we can transform the data and look at the output to confirm the
// behavior of the estimator.
// This operation doesn't actually evaluate data until we read the data
// below.
var normalizeTransform = normalize.Fit(data);
var transformedData = normalizeTransform.Transform(data);
var normalizeNoCdfTransform = normalizeNoCdf.Fit(data);
var noCdfData = normalizeNoCdfTransform.Transform(data);
var column = transformedData.GetColumn<float[]>("Features").ToArray();
foreach (var row in column)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// 0.1587, 0.1587, 0.8654, 0.0000, 0.8413
// 0.8413, 0.8413, 0.5837, 0.0000, 0.0000
// 0.0000, 0.0000, 0.0940, 0.0000, 0.0000
// 0.0000, 0.0000, 0.0000, 0.0000, 0.1587
var columnFixZero = noCdfData.GetColumn<float[]>("Features").ToArray();
foreach (var row in columnFixZero)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// 1.8854, 1.8854, 5.2970, 0.0000, 7670682000000000000000000000000000000.0000
// 4.7708, 4.7708, 3.0925, 0.0000, -7670682000000000000000000000000000000.0000
// -1.0000,-1.0000, 0.8879, 0.0000, -1.0000
// -3.8854,-3.8854,-3.5213, 0.0000, -0.9775
// Let's get transformation parameters. Since we work with only one
// column we need to pass 0 as parameter for
// GetNormalizerModelParameters. If we have multiple columns
// transformations we need to pass index of InputOutputColumnPair.
var transformParams = normalizeTransform.GetNormalizerModelParameters(0)
as CdfNormalizerModelParameters<ImmutableArray<float>>;
Console.WriteLine("The 1-index value in resulting array would be " +
"produce by:");
Console.WriteLine("y = 0.5* (1 + ERF((Math.Log(x)- " + transformParams
.Mean[1] + ") / (" + transformParams.StandardDeviation[1] +
" * sqrt(2)))");
// ERF is https://en.wikipedia.org/wiki/Error_function.
// Expected output:
// The 1-index value in resulting array would be produce by:
// y = 0.5* (1 + ERF((Math.Log(x)- 0.3465736) / (0.3465736 * sqrt(2)))
var noCdfParams = normalizeNoCdfTransform.GetNormalizerModelParameters(
0) as AffineNormalizerModelParameters<ImmutableArray<float>>;
var offset = noCdfParams.Offset.Length == 0 ? 0 : noCdfParams.Offset[1];
var scale = noCdfParams.Scale[1];
Console.WriteLine($"The 1-index value in resulting array would be " +
$"produce by: y = (x - ({offset})) * {scale}");
// Expected output:
// The 1-index value in resulting array would be produce by: y = (x - (0.3465736)) * 2.88539
}
private class DataPoint
{
[VectorType(5)]
public float[] Features { get; set; }
}
}
}
プロパティ
Mean |
平均。 スカラーの場合、これは 1 つの値です。 ベクトルの場合、これはスロットの数と同じ長さになります。 |
StandardDeviation |
標準偏差。 スカラーの場合、これは 1 つの値です。 ベクトルの場合、これはスロットの数と同じ長さになります。 |
UseLog |
最初に入力に対数を適用する必要があるかどうか。 |