Ескертпе
Бұл бетке кіру үшін қатынас шегін айқындау қажет. Жүйеге кіруді немесе каталогтарды өзгертуді байқап көруге болады.
Бұл бетке кіру үшін қатынас шегін айқындау қажет. Каталогтарды өзгертуді байқап көруге болады.
Usage
microsoftml.rx_neural_network(formula: str,
data: [revoscalepy.datasource.RxDataSource.RxDataSource,
pandas.core.frame.DataFrame], method: ['binary', 'multiClass',
'regression'] = 'binary', num_hidden_nodes: int = 100,
num_iterations: int = 100,
optimizer: [<function adadelta_optimizer at 0x0000007156EAC048>,
<function sgd_optimizer at 0x0000007156E9FB70>] = {'Name': 'SgdOptimizer',
'Settings': {}}, net_definition: str = None,
init_wts_diameter: float = 0.1, max_norm: float = 0,
acceleration: [<function avx_math at 0x0000007156E9FEA0>,
<function clr_math at 0x0000007156EAC158>,
<function gpu_math at 0x0000007156EAC1E0>,
<function mkl_math at 0x0000007156EAC268>,
<function sse_math at 0x0000007156EAC2F0>] = {'Name': 'AvxMath',
'Settings': {}}, mini_batch_size: int = 1, normalize: ['No',
'Warn', 'Auto', 'Yes'] = 'Auto', ml_transforms: list = None,
ml_transform_vars: list = None, row_selection: str = None,
transforms: dict = None, transform_objects: dict = None,
transform_function: str = None,
transform_variables: list = None,
transform_packages: list = None,
transform_environment: dict = None, blocks_per_read: int = None,
report_progress: int = None, verbose: int = 1,
ensemble: microsoftml.modules.ensemble.EnsembleControl = None,
compute_context: revoscalepy.computecontext.RxComputeContext.RxComputeContext = None)
Description
Нейронные сети для моделирования регрессии и классификации двоичного и многоклассового класса.
Сведения
Нейронная сеть — это класс моделей прогнозирования, вдохновленный человеческим мозгом. Нейронная сеть может быть представлена в виде взвешированного направленного графа. Каждый узел в графе называется нейроном. Нейроны в графе расположены на слоях, где нейроны в одном слое связаны весовым краем (вес может быть 0 или положительными числами) к нейронам в следующем слое. Первый слой называется входным слоем, и каждый нейрон в входном слое соответствует одному из признаков. Последний слой функции называется выходным слоем. Таким образом, в случае двоичных нейронных сетей он содержит два выходных нейрона, по одному для каждого класса, значения которых являются вероятностями принадлежности к каждому классу. Остальные слои называются скрытыми. Значения нейронов в скрытых слоях и в выходном слое задаются путем вычисления взвешаемой суммы значений нейронов в предыдущем слое и применения функции активации к этой взвешаемой сумме. Модель нейронной сети определяется структурой графа (а именно, количеством скрытых слоев и числом нейронов в каждом скрытом слое), выбором функции активации и весами на краях графа. Алгоритм нейронной сети пытается узнать оптимальные весы на ребрах на основе обучающих данных.
Хотя нейронные сети широко известны для использования в глубоком обучении и моделировании сложных проблем, таких как распознавание изображений, они также легко адаптированы к регрессии проблем. Любой класс статистических моделей можно считать нейронной сетью, если они используют адаптивные весы и могут приблизить нелинейные функции их входных данных. Регрессия нейронной сети особенно подходит для проблем, когда более традиционная модель регрессии не может соответствовать решению.
Arguments
формула
Формула, как описано в revoscalepy.rx_formula.
Термины взаимодействия и F() в настоящее время не поддерживаются в microsoftml.
данные
Объект источника данных или символьная строка, указывающая XDF-файл или объект кадра данных.
method
Символьная строка, обозначающая тип быстрого дерева:
"binary"для нейронной сети двоичной классификации по умолчанию."multiClass"для нейронной сети с несколькими классами."regression"для нейронной сети регрессии.
num_hidden_nodes
Число скрытых узлов по умолчанию в нейронной сети. Значение по умолчанию — 100.
num_iterations
Количество итераций в полном наборе обучения. Значение по умолчанию — 100.
optimizer
Список, указывающий sgd алгоритм или adaptive алгоритм оптимизации. Этот список можно создать с помощью sgd_optimizer или adadelta_optimizer.
Значение по умолчанию — sgd.
net_definition
Определение net# структуры нейронной сети. Дополнительные сведения о языке Net# см. в справочном руководстве
init_wts_diameter
Задает начальный диаметр весов, указывающий диапазон, от которого извлекаются значения для начальных весов обучения. Весы инициализированы случайным образом из этого диапазона. Значение по умолчанию — 0.1.
max_norm
Задает верхнюю границу, чтобы ограничить норму входящего вектора веса на каждой скрытой единице. Это может быть очень важно в максимальном значении нейронных сетей, а также в случаях, когда обучение создает несвязанные весы.
Ускорение
Указывает тип используемого аппаратного ускорения. Возможные значения: "sse_math" и "gpu_math". Для ускорения GPU рекомендуется использовать miniBatchSize больше одного. Если вы хотите использовать ускорение GPU, необходимо выполнить дополнительные действия по настройке вручную:
Скачайте и установите набор средств NVidia CUDA 6.5 (набор средств CUDA).
Скачайте и установите библиотеку NVidia cuDNN версии 2 (библиотеку cudnn).
Найдите каталог libs пакета microsoftml путем вызова
import microsoftml, os.os.path.join(microsoftml.__path__[0], "mxLibs")Скопируйте cublas64_65.dll, cudart64_65.dll и cusparse64_65.dll из набора средств CUDA 6.5 в каталог libs пакета microsoftml.
Скопируйте cudnn64_65.dll из библиотеки cuDNN версии 2 в каталог libs пакета microsoftml.
mini_batch_size
Задает размер мини-пакета. Рекомендуемые значения : от 1 до 256. Этот параметр используется только в том случае, если ускорение — GPU. Установка этого параметра на более высокое значение повышает скорость обучения, но может отрицательно повлиять на точность. Значение по умолчанию — 1.
Нормализации
Указывает тип используемой автоматической нормализации:
"Warn": если требуется нормализация, она выполняется автоматически. Это выбор по умолчанию."No": нормализация не выполняется."Yes": выполняется нормализация."Auto": если требуется нормализация, отображается предупреждение, но нормализация не выполняется.
Нормализация перемасштабирует разнородные диапазоны данных до стандартного масштаба. Масштабирование функций обеспечивает пропорциональность расстояний между точками данных и позволяет различным методам оптимизации, таким как градиентный спуск, быстрее сходиться. Если нормализация выполняется, MaxMin используется нормализатор. Он нормализует значения в интервале [a, b] где -1 <= a <= 0 и b - a = 10 <= b <= 1 . Этот нормализатор сохраняет разреженность, сопоставляя ноль с нулем.
ml_transforms
Указывает список преобразований MicrosoftML для выполнения данных перед обучением или Нет , если преобразования не выполняются. См featurize_text. раздел , categoricalа также categorical_hashсведения о поддерживаемых преобразованиях.
Эти преобразования выполняются после любых указанных преобразований Python.
Значение по умолчанию — None.
ml_transform_vars
Указывает вектор символов имен переменных, используемых или ml_transformsнет , если они не используются.
Значение по умолчанию — None.
row_selection
НЕ ПОДДЕРЖИВАЕТСЯ. Указывает строки (наблюдения) из набора данных, которые должны использоваться моделью с именем логической переменной из набора данных (в кавычках) или логическим выражением с помощью переменных в наборе данных. Рассмотрим пример.
row_selection = "old"используются только наблюдения, в которых значение переменнойoldравноTrue.row_selection = (age > 20) & (age < 65) & (log(income) > 10)Использует только наблюдения, в которых значениеageпеременной составляет от 20 до 65, а значениеlogпеременнойincomeбольше 10.
Выбор строки выполняется после обработки любых преобразований данных (см. аргументы transforms или transform_function). Как и во всех выражениях, row_selection можно определить вне вызова функции с помощью expression функции.
Преобразует
НЕ ПОДДЕРЖИВАЕТСЯ. Выражение формы, представляющей первый раунд преобразований переменных. Как и во всех выражениях, transforms (или row_selection) можно определить вне вызова функции с помощью expression функции.
transform_objects
НЕ ПОДДЕРЖИВАЕТСЯ. Именованный список, содержащий объекты, на которые можно ссылаться, transformstransform_functionи row_selection.
transform_function
Функция преобразования переменной.
transform_variables
Символьный вектор входных переменных набора данных, необходимых для функции преобразования.
transform_packages
НЕ ПОДДЕРЖИВАЕТСЯ. Вектор символов, указывающий дополнительные пакеты Python (за пределами указанных в RxOptions.get_option("transform_packages")) для обеспечения доступности и предварительной загрузки для использования в функциях преобразования переменных.
Например, те, которые явно определены в функциях revoscalepy через их transforms аргументы или transform_function те, которые определены неявно через их formula или row_selection аргументы. Аргумент transform_packages также может быть None, указывающий, что пакеты за пределами RxOptions.get_option("transform_packages") предварительно загружены.
transform_environment
НЕ ПОДДЕРЖИВАЕТСЯ. Определяемая пользователем среда, которая служит родительской средой для всех сред, разработанных внутренне и используется для преобразования данных переменных.
Если transform_environment = Noneвместо этого используется новая среда hash с родительским revoscalepy.baseenvis.
blocks_per_read
Указывает количество блоков для чтения для каждого блока данных, считываемого из источника данных.
report_progress
Целочисленное значение, указывающее уровень отчетов о ходе обработки строк:
0: не сообщается о ходе выполнения.1: количество обработанных строк печатается и обновляется.2: отображаются строки, обрабатываемые и сроки.3: обрабатываются строки и сообщаются все сроки.
verbose
Целочисленное значение, указывающее количество нужных выходных данных.
Если 0подробные выходные данные не печатаются во время вычислений. Целые значения от 1 того, чтобы 4 обеспечить увеличение объема информации.
compute_context
Задает контекст, в котором выполняются вычисления, указанные с допустимым revoscalepy. RxComputeContext. В настоящее время локальная и revoscalepy. Поддерживаются контексты вычислений RxInSqlServer.
Ансамбль
Управление параметрами для ensembling.
Возвраты
NeuralNetwork Объект с обученной моделью.
Замечание
Этот алгоритм является однопоточным и не будет пытаться загрузить весь набор данных в память.
См. также
adadelta_optimizer, sgd_optimizer, avx_math, clr_mathgpu_mathmkl_mathsse_mathrx_predict.
Ссылки
Википедия: Искусственные нейронные сети
Пример двоичной классификации
'''
Binary Classification.
'''
import numpy
import pandas
from microsoftml import rx_neural_network, rx_predict
from revoscalepy.etl.RxDataStep import rx_data_step
from microsoftml.datasets.datasets import get_dataset
infert = get_dataset("infert")
import sklearn
if sklearn.__version__ < "0.18":
from sklearn.cross_validation import train_test_split
else:
from sklearn.model_selection import train_test_split
infertdf = infert.as_df()
infertdf["isCase"] = infertdf.case == 1
data_train, data_test, y_train, y_test = train_test_split(infertdf, infertdf.isCase)
forest_model = rx_neural_network(
formula=" isCase ~ age + parity + education + spontaneous + induced ",
data=data_train)
# RuntimeError: The type (RxTextData) for file is not supported.
score_ds = rx_predict(forest_model, data=data_test,
extra_vars_to_write=["isCase", "Score"])
# Print the first five rows
print(rx_data_step(score_ds, number_rows_read=5))
Выходные данные:
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 186, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 186, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 186, Read Time: 0, Transform Time: 0
Beginning processing data.
Using: AVX Math
***** Net definition *****
input Data [5];
hidden H [100] sigmoid { // Depth 1
from Data all;
}
output Result [1] sigmoid { // Depth 0
from H all;
}
***** End net definition *****
Input count: 5
Output count: 1
Output Function: Sigmoid
Loss Function: LogLoss
PreTrainer: NoPreTrainer
___________________________________________________________________
Starting training...
Learning rate: 0.001000
Momentum: 0.000000
InitWtsDiameter: 0.100000
___________________________________________________________________
Initializing 1 Hidden Layers, 701 Weights...
Estimated Pre-training MeanError = 0.742343
Iter:1/100, MeanErr=0.680245(-8.37%), 119.87M WeightUpdates/sec
Iter:2/100, MeanErr=0.637843(-6.23%), 122.52M WeightUpdates/sec
Iter:3/100, MeanErr=0.635404(-0.38%), 122.24M WeightUpdates/sec
Iter:4/100, MeanErr=0.634980(-0.07%), 73.36M WeightUpdates/sec
Iter:5/100, MeanErr=0.635287(0.05%), 128.26M WeightUpdates/sec
Iter:6/100, MeanErr=0.634572(-0.11%), 131.05M WeightUpdates/sec
Iter:7/100, MeanErr=0.634827(0.04%), 124.27M WeightUpdates/sec
Iter:8/100, MeanErr=0.635359(0.08%), 123.69M WeightUpdates/sec
Iter:9/100, MeanErr=0.635244(-0.02%), 119.35M WeightUpdates/sec
Iter:10/100, MeanErr=0.634712(-0.08%), 127.80M WeightUpdates/sec
Iter:11/100, MeanErr=0.635105(0.06%), 122.69M WeightUpdates/sec
Iter:12/100, MeanErr=0.635226(0.02%), 98.61M WeightUpdates/sec
Iter:13/100, MeanErr=0.634977(-0.04%), 127.88M WeightUpdates/sec
Iter:14/100, MeanErr=0.634347(-0.10%), 123.25M WeightUpdates/sec
Iter:15/100, MeanErr=0.634891(0.09%), 124.27M WeightUpdates/sec
Iter:16/100, MeanErr=0.635116(0.04%), 123.06M WeightUpdates/sec
Iter:17/100, MeanErr=0.633770(-0.21%), 122.05M WeightUpdates/sec
Iter:18/100, MeanErr=0.634992(0.19%), 128.79M WeightUpdates/sec
Iter:19/100, MeanErr=0.634385(-0.10%), 122.95M WeightUpdates/sec
Iter:20/100, MeanErr=0.634752(0.06%), 127.14M WeightUpdates/sec
Iter:21/100, MeanErr=0.635043(0.05%), 123.44M WeightUpdates/sec
Iter:22/100, MeanErr=0.634845(-0.03%), 121.81M WeightUpdates/sec
Iter:23/100, MeanErr=0.634850(0.00%), 125.11M WeightUpdates/sec
Iter:24/100, MeanErr=0.634617(-0.04%), 122.18M WeightUpdates/sec
Iter:25/100, MeanErr=0.634675(0.01%), 125.69M WeightUpdates/sec
Iter:26/100, MeanErr=0.634911(0.04%), 122.44M WeightUpdates/sec
Iter:27/100, MeanErr=0.634311(-0.09%), 121.90M WeightUpdates/sec
Iter:28/100, MeanErr=0.634798(0.08%), 123.54M WeightUpdates/sec
Iter:29/100, MeanErr=0.634674(-0.02%), 127.53M WeightUpdates/sec
Iter:30/100, MeanErr=0.634546(-0.02%), 100.96M WeightUpdates/sec
Iter:31/100, MeanErr=0.634859(0.05%), 124.40M WeightUpdates/sec
Iter:32/100, MeanErr=0.634747(-0.02%), 128.21M WeightUpdates/sec
Iter:33/100, MeanErr=0.634842(0.02%), 125.82M WeightUpdates/sec
Iter:34/100, MeanErr=0.634703(-0.02%), 77.48M WeightUpdates/sec
Iter:35/100, MeanErr=0.634804(0.02%), 122.21M WeightUpdates/sec
Iter:36/100, MeanErr=0.634690(-0.02%), 112.48M WeightUpdates/sec
Iter:37/100, MeanErr=0.634654(-0.01%), 119.18M WeightUpdates/sec
Iter:38/100, MeanErr=0.634885(0.04%), 137.19M WeightUpdates/sec
Iter:39/100, MeanErr=0.634723(-0.03%), 113.80M WeightUpdates/sec
Iter:40/100, MeanErr=0.634714(0.00%), 127.50M WeightUpdates/sec
Iter:41/100, MeanErr=0.634794(0.01%), 129.54M WeightUpdates/sec
Iter:42/100, MeanErr=0.633835(-0.15%), 133.05M WeightUpdates/sec
Iter:43/100, MeanErr=0.634401(0.09%), 128.95M WeightUpdates/sec
Iter:44/100, MeanErr=0.634575(0.03%), 123.42M WeightUpdates/sec
Iter:45/100, MeanErr=0.634673(0.02%), 123.78M WeightUpdates/sec
Iter:46/100, MeanErr=0.634692(0.00%), 119.04M WeightUpdates/sec
Iter:47/100, MeanErr=0.634476(-0.03%), 122.95M WeightUpdates/sec
Iter:48/100, MeanErr=0.634583(0.02%), 97.87M WeightUpdates/sec
Iter:49/100, MeanErr=0.634706(0.02%), 121.41M WeightUpdates/sec
Iter:50/100, MeanErr=0.634564(-0.02%), 120.58M WeightUpdates/sec
Iter:51/100, MeanErr=0.634118(-0.07%), 120.17M WeightUpdates/sec
Iter:52/100, MeanErr=0.634699(0.09%), 127.27M WeightUpdates/sec
Iter:53/100, MeanErr=0.634123(-0.09%), 110.51M WeightUpdates/sec
Iter:54/100, MeanErr=0.634390(0.04%), 123.74M WeightUpdates/sec
Iter:55/100, MeanErr=0.634461(0.01%), 113.66M WeightUpdates/sec
Iter:56/100, MeanErr=0.634415(-0.01%), 118.61M WeightUpdates/sec
Iter:57/100, MeanErr=0.634453(0.01%), 114.99M WeightUpdates/sec
Iter:58/100, MeanErr=0.634478(0.00%), 104.53M WeightUpdates/sec
Iter:59/100, MeanErr=0.634010(-0.07%), 124.62M WeightUpdates/sec
Iter:60/100, MeanErr=0.633901(-0.02%), 118.93M WeightUpdates/sec
Iter:61/100, MeanErr=0.634088(0.03%), 40.46M WeightUpdates/sec
Iter:62/100, MeanErr=0.634046(-0.01%), 94.65M WeightUpdates/sec
Iter:63/100, MeanErr=0.634233(0.03%), 27.18M WeightUpdates/sec
Iter:64/100, MeanErr=0.634596(0.06%), 123.94M WeightUpdates/sec
Iter:65/100, MeanErr=0.634185(-0.06%), 125.01M WeightUpdates/sec
Iter:66/100, MeanErr=0.634469(0.04%), 119.41M WeightUpdates/sec
Iter:67/100, MeanErr=0.634333(-0.02%), 124.11M WeightUpdates/sec
Iter:68/100, MeanErr=0.634203(-0.02%), 112.68M WeightUpdates/sec
Iter:69/100, MeanErr=0.633854(-0.05%), 118.62M WeightUpdates/sec
Iter:70/100, MeanErr=0.634319(0.07%), 123.59M WeightUpdates/sec
Iter:71/100, MeanErr=0.634423(0.02%), 122.51M WeightUpdates/sec
Iter:72/100, MeanErr=0.634388(-0.01%), 126.15M WeightUpdates/sec
Iter:73/100, MeanErr=0.634230(-0.02%), 126.51M WeightUpdates/sec
Iter:74/100, MeanErr=0.634011(-0.03%), 128.32M WeightUpdates/sec
Iter:75/100, MeanErr=0.634294(0.04%), 127.48M WeightUpdates/sec
Iter:76/100, MeanErr=0.634372(0.01%), 123.51M WeightUpdates/sec
Iter:77/100, MeanErr=0.632020(-0.37%), 122.12M WeightUpdates/sec
Iter:78/100, MeanErr=0.633770(0.28%), 119.55M WeightUpdates/sec
Iter:79/100, MeanErr=0.633504(-0.04%), 124.21M WeightUpdates/sec
Iter:80/100, MeanErr=0.634154(0.10%), 125.94M WeightUpdates/sec
Iter:81/100, MeanErr=0.633491(-0.10%), 120.83M WeightUpdates/sec
Iter:82/100, MeanErr=0.634212(0.11%), 128.60M WeightUpdates/sec
Iter:83/100, MeanErr=0.634138(-0.01%), 73.58M WeightUpdates/sec
Iter:84/100, MeanErr=0.634244(0.02%), 124.08M WeightUpdates/sec
Iter:85/100, MeanErr=0.634065(-0.03%), 96.43M WeightUpdates/sec
Iter:86/100, MeanErr=0.634174(0.02%), 124.28M WeightUpdates/sec
Iter:87/100, MeanErr=0.633966(-0.03%), 125.24M WeightUpdates/sec
Iter:88/100, MeanErr=0.633989(0.00%), 130.31M WeightUpdates/sec
Iter:89/100, MeanErr=0.633767(-0.04%), 115.73M WeightUpdates/sec
Iter:90/100, MeanErr=0.633831(0.01%), 122.81M WeightUpdates/sec
Iter:91/100, MeanErr=0.633219(-0.10%), 114.91M WeightUpdates/sec
Iter:92/100, MeanErr=0.633589(0.06%), 93.29M WeightUpdates/sec
Iter:93/100, MeanErr=0.634086(0.08%), 123.31M WeightUpdates/sec
Iter:94/100, MeanErr=0.634075(0.00%), 120.99M WeightUpdates/sec
Iter:95/100, MeanErr=0.634071(0.00%), 122.49M WeightUpdates/sec
Iter:96/100, MeanErr=0.633523(-0.09%), 116.48M WeightUpdates/sec
Iter:97/100, MeanErr=0.634103(0.09%), 128.85M WeightUpdates/sec
Iter:98/100, MeanErr=0.633836(-0.04%), 123.87M WeightUpdates/sec
Iter:99/100, MeanErr=0.633772(-0.01%), 128.17M WeightUpdates/sec
Iter:100/100, MeanErr=0.633684(-0.01%), 123.65M WeightUpdates/sec
Done!
Estimated Post-training MeanError = 0.631268
___________________________________________________________________
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.2454094
Elapsed time: 00:00:00.0082325
Beginning processing data.
Rows Read: 62, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0297006
Finished writing 62 rows.
Writing completed.
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: 0.001 seconds
isCase PredictedLabel Score Probability
0 True False -0.689636 0.334114
1 True False -0.710219 0.329551
2 True False -0.712912 0.328956
3 False False -0.700765 0.331643
4 True False -0.689783 0.334081
Пример классификации многоклассов
'''
MultiClass Classification.
'''
import numpy
import pandas
from microsoftml import rx_neural_network, rx_predict
from revoscalepy.etl.RxDataStep import rx_data_step
from microsoftml.datasets.datasets import get_dataset
iris = get_dataset("iris")
import sklearn
if sklearn.__version__ < "0.18":
from sklearn.cross_validation import train_test_split
else:
from sklearn.model_selection import train_test_split
irisdf = iris.as_df()
irisdf["Species"] = irisdf["Species"].astype("category")
data_train, data_test, y_train, y_test = train_test_split(irisdf, irisdf.Species)
model = rx_neural_network(
formula=" Species ~ Sepal_Length + Sepal_Width + Petal_Length + Petal_Width ",
method="multiClass",
data=data_train)
# RuntimeError: The type (RxTextData) for file is not supported.
score_ds = rx_predict(model, data=data_test,
extra_vars_to_write=["Species", "Score"])
# Print the first five rows
print(rx_data_step(score_ds, number_rows_read=5))
Выходные данные:
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 112, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 112, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 112, Read Time: 0, Transform Time: 0
Beginning processing data.
Using: AVX Math
***** Net definition *****
input Data [4];
hidden H [100] sigmoid { // Depth 1
from Data all;
}
output Result [3] softmax { // Depth 0
from H all;
}
***** End net definition *****
Input count: 4
Output count: 3
Output Function: SoftMax
Loss Function: LogLoss
PreTrainer: NoPreTrainer
___________________________________________________________________
Starting training...
Learning rate: 0.001000
Momentum: 0.000000
InitWtsDiameter: 0.100000
___________________________________________________________________
Initializing 1 Hidden Layers, 803 Weights...
Estimated Pre-training MeanError = 1.949606
Iter:1/100, MeanErr=1.937924(-0.60%), 98.43M WeightUpdates/sec
Iter:2/100, MeanErr=1.921153(-0.87%), 96.21M WeightUpdates/sec
Iter:3/100, MeanErr=1.920000(-0.06%), 95.55M WeightUpdates/sec
Iter:4/100, MeanErr=1.917267(-0.14%), 81.25M WeightUpdates/sec
Iter:5/100, MeanErr=1.917611(0.02%), 102.44M WeightUpdates/sec
Iter:6/100, MeanErr=1.918476(0.05%), 106.16M WeightUpdates/sec
Iter:7/100, MeanErr=1.916096(-0.12%), 97.85M WeightUpdates/sec
Iter:8/100, MeanErr=1.919486(0.18%), 77.99M WeightUpdates/sec
Iter:9/100, MeanErr=1.916452(-0.16%), 95.67M WeightUpdates/sec
Iter:10/100, MeanErr=1.916024(-0.02%), 102.06M WeightUpdates/sec
Iter:11/100, MeanErr=1.917155(0.06%), 99.21M WeightUpdates/sec
Iter:12/100, MeanErr=1.918543(0.07%), 99.25M WeightUpdates/sec
Iter:13/100, MeanErr=1.919120(0.03%), 85.38M WeightUpdates/sec
Iter:14/100, MeanErr=1.917713(-0.07%), 103.00M WeightUpdates/sec
Iter:15/100, MeanErr=1.917675(0.00%), 98.70M WeightUpdates/sec
Iter:16/100, MeanErr=1.917982(0.02%), 99.10M WeightUpdates/sec
Iter:17/100, MeanErr=1.916254(-0.09%), 103.41M WeightUpdates/sec
Iter:18/100, MeanErr=1.915691(-0.03%), 102.00M WeightUpdates/sec
Iter:19/100, MeanErr=1.914844(-0.04%), 86.64M WeightUpdates/sec
Iter:20/100, MeanErr=1.919268(0.23%), 94.68M WeightUpdates/sec
Iter:21/100, MeanErr=1.918748(-0.03%), 108.11M WeightUpdates/sec
Iter:22/100, MeanErr=1.917997(-0.04%), 96.33M WeightUpdates/sec
Iter:23/100, MeanErr=1.914987(-0.16%), 82.84M WeightUpdates/sec
Iter:24/100, MeanErr=1.916550(0.08%), 99.70M WeightUpdates/sec
Iter:25/100, MeanErr=1.915401(-0.06%), 96.69M WeightUpdates/sec
Iter:26/100, MeanErr=1.916092(0.04%), 101.62M WeightUpdates/sec
Iter:27/100, MeanErr=1.916381(0.02%), 98.81M WeightUpdates/sec
Iter:28/100, MeanErr=1.917414(0.05%), 102.29M WeightUpdates/sec
Iter:29/100, MeanErr=1.917316(-0.01%), 100.17M WeightUpdates/sec
Iter:30/100, MeanErr=1.916507(-0.04%), 82.09M WeightUpdates/sec
Iter:31/100, MeanErr=1.915786(-0.04%), 98.33M WeightUpdates/sec
Iter:32/100, MeanErr=1.917581(0.09%), 101.70M WeightUpdates/sec
Iter:33/100, MeanErr=1.913680(-0.20%), 79.94M WeightUpdates/sec
Iter:34/100, MeanErr=1.917264(0.19%), 102.54M WeightUpdates/sec
Iter:35/100, MeanErr=1.917377(0.01%), 100.67M WeightUpdates/sec
Iter:36/100, MeanErr=1.912060(-0.28%), 70.37M WeightUpdates/sec
Iter:37/100, MeanErr=1.917009(0.26%), 80.80M WeightUpdates/sec
Iter:38/100, MeanErr=1.916216(-0.04%), 94.56M WeightUpdates/sec
Iter:39/100, MeanErr=1.916362(0.01%), 28.22M WeightUpdates/sec
Iter:40/100, MeanErr=1.910658(-0.30%), 100.87M WeightUpdates/sec
Iter:41/100, MeanErr=1.916375(0.30%), 85.99M WeightUpdates/sec
Iter:42/100, MeanErr=1.916257(-0.01%), 102.06M WeightUpdates/sec
Iter:43/100, MeanErr=1.914505(-0.09%), 99.86M WeightUpdates/sec
Iter:44/100, MeanErr=1.914638(0.01%), 103.11M WeightUpdates/sec
Iter:45/100, MeanErr=1.915141(0.03%), 107.62M WeightUpdates/sec
Iter:46/100, MeanErr=1.915119(0.00%), 99.65M WeightUpdates/sec
Iter:47/100, MeanErr=1.915379(0.01%), 107.03M WeightUpdates/sec
Iter:48/100, MeanErr=1.912565(-0.15%), 104.78M WeightUpdates/sec
Iter:49/100, MeanErr=1.915466(0.15%), 110.43M WeightUpdates/sec
Iter:50/100, MeanErr=1.914038(-0.07%), 98.44M WeightUpdates/sec
Iter:51/100, MeanErr=1.915015(0.05%), 96.28M WeightUpdates/sec
Iter:52/100, MeanErr=1.913771(-0.06%), 89.27M WeightUpdates/sec
Iter:53/100, MeanErr=1.911621(-0.11%), 72.67M WeightUpdates/sec
Iter:54/100, MeanErr=1.914969(0.18%), 111.17M WeightUpdates/sec
Iter:55/100, MeanErr=1.913894(-0.06%), 98.68M WeightUpdates/sec
Iter:56/100, MeanErr=1.914871(0.05%), 95.41M WeightUpdates/sec
Iter:57/100, MeanErr=1.912898(-0.10%), 80.72M WeightUpdates/sec
Iter:58/100, MeanErr=1.913334(0.02%), 103.71M WeightUpdates/sec
Iter:59/100, MeanErr=1.913362(0.00%), 99.57M WeightUpdates/sec
Iter:60/100, MeanErr=1.913915(0.03%), 106.21M WeightUpdates/sec
Iter:61/100, MeanErr=1.913310(-0.03%), 112.27M WeightUpdates/sec
Iter:62/100, MeanErr=1.913395(0.00%), 50.86M WeightUpdates/sec
Iter:63/100, MeanErr=1.912814(-0.03%), 58.91M WeightUpdates/sec
Iter:64/100, MeanErr=1.911468(-0.07%), 72.06M WeightUpdates/sec
Iter:65/100, MeanErr=1.912313(0.04%), 86.34M WeightUpdates/sec
Iter:66/100, MeanErr=1.913320(0.05%), 114.39M WeightUpdates/sec
Iter:67/100, MeanErr=1.912914(-0.02%), 105.97M WeightUpdates/sec
Iter:68/100, MeanErr=1.909881(-0.16%), 105.73M WeightUpdates/sec
Iter:69/100, MeanErr=1.911649(0.09%), 105.23M WeightUpdates/sec
Iter:70/100, MeanErr=1.911192(-0.02%), 110.24M WeightUpdates/sec
Iter:71/100, MeanErr=1.912480(0.07%), 106.86M WeightUpdates/sec
Iter:72/100, MeanErr=1.909881(-0.14%), 97.28M WeightUpdates/sec
Iter:73/100, MeanErr=1.911678(0.09%), 109.57M WeightUpdates/sec
Iter:74/100, MeanErr=1.911137(-0.03%), 91.01M WeightUpdates/sec
Iter:75/100, MeanErr=1.910706(-0.02%), 99.41M WeightUpdates/sec
Iter:76/100, MeanErr=1.910869(0.01%), 84.18M WeightUpdates/sec
Iter:77/100, MeanErr=1.911643(0.04%), 105.07M WeightUpdates/sec
Iter:78/100, MeanErr=1.911438(-0.01%), 110.12M WeightUpdates/sec
Iter:79/100, MeanErr=1.909590(-0.10%), 84.16M WeightUpdates/sec
Iter:80/100, MeanErr=1.911181(0.08%), 92.30M WeightUpdates/sec
Iter:81/100, MeanErr=1.910534(-0.03%), 110.60M WeightUpdates/sec
Iter:82/100, MeanErr=1.909340(-0.06%), 54.07M WeightUpdates/sec
Iter:83/100, MeanErr=1.908275(-0.06%), 104.08M WeightUpdates/sec
Iter:84/100, MeanErr=1.910364(0.11%), 107.19M WeightUpdates/sec
Iter:85/100, MeanErr=1.910286(0.00%), 102.55M WeightUpdates/sec
Iter:86/100, MeanErr=1.909155(-0.06%), 79.72M WeightUpdates/sec
Iter:87/100, MeanErr=1.909384(0.01%), 102.37M WeightUpdates/sec
Iter:88/100, MeanErr=1.907751(-0.09%), 105.48M WeightUpdates/sec
Iter:89/100, MeanErr=1.910164(0.13%), 102.53M WeightUpdates/sec
Iter:90/100, MeanErr=1.907935(-0.12%), 105.03M WeightUpdates/sec
Iter:91/100, MeanErr=1.909510(0.08%), 99.97M WeightUpdates/sec
Iter:92/100, MeanErr=1.907405(-0.11%), 100.03M WeightUpdates/sec
Iter:93/100, MeanErr=1.905757(-0.09%), 113.21M WeightUpdates/sec
Iter:94/100, MeanErr=1.909167(0.18%), 107.86M WeightUpdates/sec
Iter:95/100, MeanErr=1.907593(-0.08%), 106.09M WeightUpdates/sec
Iter:96/100, MeanErr=1.908358(0.04%), 111.25M WeightUpdates/sec
Iter:97/100, MeanErr=1.906484(-0.10%), 95.81M WeightUpdates/sec
Iter:98/100, MeanErr=1.908239(0.09%), 105.89M WeightUpdates/sec
Iter:99/100, MeanErr=1.908508(0.01%), 103.05M WeightUpdates/sec
Iter:100/100, MeanErr=1.904747(-0.20%), 106.81M WeightUpdates/sec
Done!
Estimated Post-training MeanError = 1.896338
___________________________________________________________________
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.1620840
Elapsed time: 00:00:00.0096627
Beginning processing data.
Rows Read: 38, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0312987
Finished writing 38 rows.
Writing completed.
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: Less than .001 seconds
Species Score.0 Score.1 Score.2
0 versicolor 0.350161 0.339557 0.310282
1 setosa 0.358506 0.336593 0.304901
2 virginica 0.346957 0.340573 0.312470
3 virginica 0.346685 0.340748 0.312567
4 virginica 0.348469 0.340113 0.311417
Пример регрессии
'''
Regression.
'''
import numpy
import pandas
from microsoftml import rx_neural_network, rx_predict
from revoscalepy.etl.RxDataStep import rx_data_step
from microsoftml.datasets.datasets import get_dataset
attitude = get_dataset("attitude")
import sklearn
if sklearn.__version__ < "0.18":
from sklearn.cross_validation import train_test_split
else:
from sklearn.model_selection import train_test_split
attitudedf = attitude.as_df()
data_train, data_test = train_test_split(attitudedf)
model = rx_neural_network(
formula="rating ~ complaints + privileges + learning + raises + critical + advance",
method="regression",
data=data_train)
# RuntimeError: The type (RxTextData) for file is not supported.
score_ds = rx_predict(model, data=data_test,
extra_vars_to_write=["rating"])
# Print the first five rows
print(rx_data_step(score_ds, number_rows_read=5))
Выходные данные:
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 22, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 22, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 22, Read Time: 0, Transform Time: 0
Beginning processing data.
Using: AVX Math
***** Net definition *****
input Data [6];
hidden H [100] sigmoid { // Depth 1
from Data all;
}
output Result [1] linear { // Depth 0
from H all;
}
***** End net definition *****
Input count: 6
Output count: 1
Output Function: Linear
Loss Function: SquaredLoss
PreTrainer: NoPreTrainer
___________________________________________________________________
Starting training...
Learning rate: 0.001000
Momentum: 0.000000
InitWtsDiameter: 0.100000
___________________________________________________________________
Initializing 1 Hidden Layers, 801 Weights...
Estimated Pre-training MeanError = 4458.793673
Iter:1/100, MeanErr=1624.747024(-63.56%), 27.30M WeightUpdates/sec
Iter:2/100, MeanErr=139.267390(-91.43%), 30.50M WeightUpdates/sec
Iter:3/100, MeanErr=116.382316(-16.43%), 29.16M WeightUpdates/sec
Iter:4/100, MeanErr=114.947244(-1.23%), 32.06M WeightUpdates/sec
Iter:5/100, MeanErr=112.886818(-1.79%), 32.96M WeightUpdates/sec
Iter:6/100, MeanErr=112.406547(-0.43%), 30.29M WeightUpdates/sec
Iter:7/100, MeanErr=110.502757(-1.69%), 30.92M WeightUpdates/sec
Iter:8/100, MeanErr=111.499645(0.90%), 31.20M WeightUpdates/sec
Iter:9/100, MeanErr=111.895816(0.36%), 32.46M WeightUpdates/sec
Iter:10/100, MeanErr=110.171443(-1.54%), 34.61M WeightUpdates/sec
Iter:11/100, MeanErr=106.975524(-2.90%), 22.14M WeightUpdates/sec
Iter:12/100, MeanErr=107.708220(0.68%), 7.73M WeightUpdates/sec
Iter:13/100, MeanErr=105.345097(-2.19%), 28.99M WeightUpdates/sec
Iter:14/100, MeanErr=109.937833(4.36%), 31.04M WeightUpdates/sec
Iter:15/100, MeanErr=106.672340(-2.97%), 30.04M WeightUpdates/sec
Iter:16/100, MeanErr=108.474555(1.69%), 32.41M WeightUpdates/sec
Iter:17/100, MeanErr=109.449054(0.90%), 31.60M WeightUpdates/sec
Iter:18/100, MeanErr=105.911830(-3.23%), 34.05M WeightUpdates/sec
Iter:19/100, MeanErr=106.045172(0.13%), 33.80M WeightUpdates/sec
Iter:20/100, MeanErr=108.360427(2.18%), 33.60M WeightUpdates/sec
Iter:21/100, MeanErr=106.506436(-1.71%), 33.77M WeightUpdates/sec
Iter:22/100, MeanErr=99.167335(-6.89%), 32.26M WeightUpdates/sec
Iter:23/100, MeanErr=108.115797(9.02%), 25.86M WeightUpdates/sec
Iter:24/100, MeanErr=106.292283(-1.69%), 31.03M WeightUpdates/sec
Iter:25/100, MeanErr=99.397875(-6.49%), 31.33M WeightUpdates/sec
Iter:26/100, MeanErr=104.805299(5.44%), 31.57M WeightUpdates/sec
Iter:27/100, MeanErr=101.385085(-3.26%), 22.92M WeightUpdates/sec
Iter:28/100, MeanErr=100.064656(-1.30%), 35.01M WeightUpdates/sec
Iter:29/100, MeanErr=100.519013(0.45%), 32.74M WeightUpdates/sec
Iter:30/100, MeanErr=99.273143(-1.24%), 35.12M WeightUpdates/sec
Iter:31/100, MeanErr=100.465649(1.20%), 33.68M WeightUpdates/sec
Iter:32/100, MeanErr=102.402320(1.93%), 33.79M WeightUpdates/sec
Iter:33/100, MeanErr=97.517196(-4.77%), 32.32M WeightUpdates/sec
Iter:34/100, MeanErr=102.597511(5.21%), 32.46M WeightUpdates/sec
Iter:35/100, MeanErr=96.187788(-6.25%), 32.32M WeightUpdates/sec
Iter:36/100, MeanErr=101.533507(5.56%), 21.44M WeightUpdates/sec
Iter:37/100, MeanErr=99.339624(-2.16%), 21.53M WeightUpdates/sec
Iter:38/100, MeanErr=98.049306(-1.30%), 15.27M WeightUpdates/sec
Iter:39/100, MeanErr=97.508282(-0.55%), 23.21M WeightUpdates/sec
Iter:40/100, MeanErr=99.894288(2.45%), 27.94M WeightUpdates/sec
Iter:41/100, MeanErr=95.190566(-4.71%), 32.47M WeightUpdates/sec
Iter:42/100, MeanErr=91.234977(-4.16%), 31.29M WeightUpdates/sec
Iter:43/100, MeanErr=98.824414(8.32%), 32.35M WeightUpdates/sec
Iter:44/100, MeanErr=96.759533(-2.09%), 22.37M WeightUpdates/sec
Iter:45/100, MeanErr=95.275106(-1.53%), 32.09M WeightUpdates/sec
Iter:46/100, MeanErr=95.749031(0.50%), 26.49M WeightUpdates/sec
Iter:47/100, MeanErr=96.267879(0.54%), 31.81M WeightUpdates/sec
Iter:48/100, MeanErr=97.383752(1.16%), 31.01M WeightUpdates/sec
Iter:49/100, MeanErr=96.605199(-0.80%), 32.05M WeightUpdates/sec
Iter:50/100, MeanErr=96.927400(0.33%), 32.42M WeightUpdates/sec
Iter:51/100, MeanErr=96.288491(-0.66%), 28.89M WeightUpdates/sec
Iter:52/100, MeanErr=92.751171(-3.67%), 33.68M WeightUpdates/sec
Iter:53/100, MeanErr=88.655001(-4.42%), 34.53M WeightUpdates/sec
Iter:54/100, MeanErr=90.923513(2.56%), 32.00M WeightUpdates/sec
Iter:55/100, MeanErr=91.627261(0.77%), 25.74M WeightUpdates/sec
Iter:56/100, MeanErr=91.132907(-0.54%), 30.00M WeightUpdates/sec
Iter:57/100, MeanErr=95.294092(4.57%), 33.13M WeightUpdates/sec
Iter:58/100, MeanErr=90.219024(-5.33%), 31.70M WeightUpdates/sec
Iter:59/100, MeanErr=92.727605(2.78%), 30.71M WeightUpdates/sec
Iter:60/100, MeanErr=86.910488(-6.27%), 33.07M WeightUpdates/sec
Iter:61/100, MeanErr=92.350984(6.26%), 32.46M WeightUpdates/sec
Iter:62/100, MeanErr=93.208298(0.93%), 31.08M WeightUpdates/sec
Iter:63/100, MeanErr=90.784723(-2.60%), 21.19M WeightUpdates/sec
Iter:64/100, MeanErr=88.685225(-2.31%), 33.17M WeightUpdates/sec
Iter:65/100, MeanErr=91.668555(3.36%), 30.65M WeightUpdates/sec
Iter:66/100, MeanErr=82.607568(-9.88%), 29.72M WeightUpdates/sec
Iter:67/100, MeanErr=88.787842(7.48%), 32.98M WeightUpdates/sec
Iter:68/100, MeanErr=88.793186(0.01%), 34.67M WeightUpdates/sec
Iter:69/100, MeanErr=88.918795(0.14%), 14.09M WeightUpdates/sec
Iter:70/100, MeanErr=87.121434(-2.02%), 33.02M WeightUpdates/sec
Iter:71/100, MeanErr=86.865602(-0.29%), 34.87M WeightUpdates/sec
Iter:72/100, MeanErr=87.261979(0.46%), 32.34M WeightUpdates/sec
Iter:73/100, MeanErr=87.812460(0.63%), 31.35M WeightUpdates/sec
Iter:74/100, MeanErr=87.818462(0.01%), 32.54M WeightUpdates/sec
Iter:75/100, MeanErr=87.085672(-0.83%), 34.80M WeightUpdates/sec
Iter:76/100, MeanErr=85.773668(-1.51%), 35.39M WeightUpdates/sec
Iter:77/100, MeanErr=85.338703(-0.51%), 34.59M WeightUpdates/sec
Iter:78/100, MeanErr=79.370105(-6.99%), 30.14M WeightUpdates/sec
Iter:79/100, MeanErr=83.026209(4.61%), 32.32M WeightUpdates/sec
Iter:80/100, MeanErr=89.776417(8.13%), 33.14M WeightUpdates/sec
Iter:81/100, MeanErr=85.447100(-4.82%), 32.32M WeightUpdates/sec
Iter:82/100, MeanErr=83.991969(-1.70%), 22.12M WeightUpdates/sec
Iter:83/100, MeanErr=85.065064(1.28%), 30.41M WeightUpdates/sec
Iter:84/100, MeanErr=83.762008(-1.53%), 31.29M WeightUpdates/sec
Iter:85/100, MeanErr=84.217726(0.54%), 34.92M WeightUpdates/sec
Iter:86/100, MeanErr=82.395181(-2.16%), 34.26M WeightUpdates/sec
Iter:87/100, MeanErr=82.979145(0.71%), 22.87M WeightUpdates/sec
Iter:88/100, MeanErr=83.656685(0.82%), 28.51M WeightUpdates/sec
Iter:89/100, MeanErr=81.132468(-3.02%), 32.43M WeightUpdates/sec
Iter:90/100, MeanErr=81.311106(0.22%), 30.91M WeightUpdates/sec
Iter:91/100, MeanErr=81.953897(0.79%), 31.98M WeightUpdates/sec
Iter:92/100, MeanErr=79.018074(-3.58%), 33.13M WeightUpdates/sec
Iter:93/100, MeanErr=78.220412(-1.01%), 31.47M WeightUpdates/sec
Iter:94/100, MeanErr=80.833884(3.34%), 25.16M WeightUpdates/sec
Iter:95/100, MeanErr=81.550135(0.89%), 32.64M WeightUpdates/sec
Iter:96/100, MeanErr=77.785628(-4.62%), 32.54M WeightUpdates/sec
Iter:97/100, MeanErr=76.438158(-1.73%), 34.34M WeightUpdates/sec
Iter:98/100, MeanErr=79.471621(3.97%), 33.12M WeightUpdates/sec
Iter:99/100, MeanErr=76.038475(-4.32%), 33.01M WeightUpdates/sec
Iter:100/100, MeanErr=75.349164(-0.91%), 32.68M WeightUpdates/sec
Done!
Estimated Post-training MeanError = 75.768932
___________________________________________________________________
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.1178557
Elapsed time: 00:00:00.0088299
Beginning processing data.
Rows Read: 8, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0293893
Finished writing 8 rows.
Writing completed.
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: 0.001 seconds
rating Score
0 82.0 70.120613
1 64.0 66.344688
2 68.0 68.862373
3 58.0 68.241341
4 63.0 67.196869