Бөлісу құралы:


Запрос журналов из службы аналитики контейнеров

Служба аналитики контейнеров собирает метрики производительности, данные инвентаризации и сведения о состоянии работоспособности из контейнеров и их узлов. Данные собираются каждые три минуты и переадресуются в рабочую область Log Analytics в Azure Monitor, где они доступны для запросов к журналам с использованием Log Analytics в Azure Monitor.

Эти данные используются в различных сценариях, таких как планирование миграции, анализ емкости, обнаружение и устранение проблем с производительностью по требованию. Журналы Azure Monitor помогают выявлять тренды, диагностировать узкие места, составлять прогнозы и сопоставлять данные, с помощью которых можно определить, оптимальна ли текущая конфигурация кластера.

Сведения о том, как использовать эти запросы, см. в статье Использование запросов в Azure Monitor Log Analytics. Полное руководство по использованию Log Analytics для выполнения запросов и работы с их результатами см. в учебном пособии по работе с Log Analytics.

Внимание

Запросы в этой статье зависят от данных, собранных аналитикой контейнеров и хранящимися в рабочей области Log Analytics. Если вы изменили параметры сбора данных по умолчанию, запросы могут не возвращать ожидаемые результаты. В частности, если вы отключили сбор данных о производительности, так как вы включили метрики Prometheus для кластера, все запросы, использующие таблицу Perf , не будут возвращать результаты.

Сведения о настройке сбора данных в службе "Аналитика контейнеров" с помощью правила сбора данных для предварительно настроенных конфигураций, включая отключение сбора данных о производительности. Дополнительные параметры сбора данных см. в статье "Настройка сбора данных в аналитике контейнеров" с помощью ConfigMap .

Открытие Log Analytics

Начать работу с Log Analytics можно несколькими способами. Все они используют разные области для запуска процесса. Для доступа ко всем данным в рабочей области выберите Журналы в меню Мониторинг. Чтобы ограничить область данных одним кластером Kubernetes, выберите Журналы в меню этого кластера.

Снимок экрана: запуск Log Analytics.

Существующие запросы к журналам

Вам не обязательно понимать, как писать запросы к журналам, чтобы использовать Log Analytics. Можно выбрать несколько предварительно созданных запросов. Вы можете запускать эти запросы без изменений или взять их за основу для создания собственных. Выберите Запросы в верхней части экрана Log Analytics и просмотрите запросы, выбрав тип ресурса Службы Kubernetes.

Снимок экрана: запросы Log Analytics для службы Kubernetes.

Таблицы контейнеров

Список таблиц с подробными описаниями, используемыми службой аналитики контейнеров, представлен в справочнике по таблицам Azure Monitor. Все эти таблицы доступны для запросов к журналам.

Пример запросов журнала

При создании запросов часто бывает полезно начать с одного-двух примеров, внося затем в них изменения в соответствии со своими требованиями. Можно поэкспериментировать с приведенными ниже примерами запросов, чтобы научиться создавать более сложные запросы.

Вывод всех сведений о жизненном цикле контейнера

ContainerInventory
| project Computer, Name, Image, ImageTag, ContainerState, CreatedTime, StartedTime, FinishedTime
| render table

События Kubernetes

Примечание.

По умолчанию обычные типы событий не собираются, поэтому вы не увидите их при запросе таблицы KubeEvents, если параметр collect_all_kube_events ConfigMap не включен. Если необходимо собрать обычные события, включите параметр collect_all_kube_events в файле container-azm-ms-agentconfig ConfigMap. Сведения о настройке конфигурации ConfigMap см. в статье "Настройка сбора данных агента для аналитики контейнеров ".

KubeEvents
| where not(isempty(Namespace))
| sort by TimeGenerated desc
| render table

Ресурсы ЦП контейнера.

Perf
| where ObjectName == "K8SContainer" and CounterName == "cpuUsageNanoCores" 
| summarize AvgCPUUsageNanoCores = avg(CounterValue) by bin(TimeGenerated, 30m), InstanceName 

Память контейнера

Этот запрос используется memoryRssBytes , который доступен только для узлов Linux.

Perf
| where ObjectName == "K8SContainer" and CounterName == "memoryRssBytes"
| summarize AvgUsedRssMemoryBytes = avg(CounterValue) by bin(TimeGenerated, 30m), InstanceName

Количество запросов в минуту с пользовательскими метриками

InsightsMetrics
| where Name == "requests_count"
| summarize Val=any(Val) by TimeGenerated=bin(TimeGenerated, 1m)
| sort by TimeGenerated asc
| project RequestsPerMinute = Val - prev(Val), TimeGenerated
| render barchart 

Модули pod по имени и пространству имен

let startTimestamp = ago(1h);
KubePodInventory
| where TimeGenerated > startTimestamp
| project ContainerID, PodName=Name, Namespace
| where PodName contains "name" and Namespace startswith "namespace"
| distinct ContainerID, PodName
| join
(
    ContainerLog
    | where TimeGenerated > startTimestamp
)
on ContainerID
// at this point before the next pipe, columns from both tables are available to be "projected". Due to both
// tables having a "Name" column, we assign an alias as PodName to one column which we actually want
| project TimeGenerated, PodName, LogEntry, LogEntrySource
| summarize by TimeGenerated, LogEntry
| order by TimeGenerated desc

Горизонтальное увеличение масштаба модулей pod (HPA)

Этот запрос возвращает количество горизонтально масштабированных реплик в каждом развертывании. Он вычисляет процент горизонтального увеличения масштаба с максимальным количеством реплик, настроенных в HPA.

let _minthreshold = 70; // minimum threshold goes here if you want to setup as an alert
let _maxthreshold = 90; // maximum threshold goes here if you want to setup as an alert
let startDateTime = ago(60m);
KubePodInventory
| where TimeGenerated >= startDateTime 
| where Namespace !in('default', 'kube-system') // List of non system namespace filter goes here.
| extend labels = todynamic(PodLabel)
| extend deployment_hpa = reverse(substring(reverse(ControllerName), indexof(reverse(ControllerName), "-") + 1))
| distinct tostring(deployment_hpa)
| join kind=inner (InsightsMetrics 
    | where TimeGenerated > startDateTime 
    | where Name == 'kube_hpa_status_current_replicas'
    | extend pTags = todynamic(Tags) //parse the tags for values
    | extend ns = todynamic(pTags.k8sNamespace) //parse namespace value from tags
    | extend deployment_hpa = todynamic(pTags.targetName) //parse HPA target name from tags
    | extend max_reps = todynamic(pTags.spec_max_replicas) // Parse maximum replica settings from HPA deployment
    | extend desired_reps = todynamic(pTags.status_desired_replicas) // Parse desired replica settings from HPA deployment
    | summarize arg_max(TimeGenerated, *) by tostring(ns), tostring(deployment_hpa), Cluster=toupper(tostring(split(_ResourceId, '/')[8])), toint(desired_reps), toint(max_reps), scale_out_percentage=(desired_reps * 100 / max_reps)
    //| where scale_out_percentage > _minthreshold and scale_out_percentage <= _maxthreshold
    )
    on deployment_hpa

Горизонтальное увеличение масштаба пула узлов

Этот запрос возвращает количество активных узлов в каждом пуле узлов. Он вычисляет количество доступных активных узлов и конфигурацию максимального количества узлов в параметрах автоматического масштабирования, чтобы определить процент горизонтального увеличения масштаба. Если вы хотите использовать запрос для правила генерации оповещений Количество результатов, обратите внимание на закомментированные строки.

let nodepoolMaxnodeCount = 10; // the maximum number of nodes in your auto scale setting goes here.
let _minthreshold = 20;
let _maxthreshold = 90;
let startDateTime = 60m;
KubeNodeInventory
| where TimeGenerated >= ago(startDateTime)
| extend nodepoolType = todynamic(Labels) //Parse the labels to get the list of node pool types
| extend nodepoolName = todynamic(nodepoolType[0].agentpool) // parse the label to get the nodepool name or set the specific nodepool name (like nodepoolName = 'agentpool)'
| summarize nodeCount = count(Computer) by ClusterName, tostring(nodepoolName), TimeGenerated
//(Uncomment the below two lines to set this as a log search alert)
//| extend scaledpercent = iff(((nodeCount * 100 / nodepoolMaxnodeCount) >= _minthreshold and (nodeCount * 100 / nodepoolMaxnodeCount) < _maxthreshold), "warn", "normal")
//| where scaledpercent == 'warn'
| summarize arg_max(TimeGenerated, *) by nodeCount, ClusterName, tostring(nodepoolName)
| project ClusterName, 
    TotalNodeCount= strcat("Total Node Count: ", nodeCount),
    ScaledOutPercentage = (nodeCount * 100 / nodepoolMaxnodeCount),  
    TimeGenerated, 
    nodepoolName

Доступность системных контейнеров (наборов реплик)

Этот запрос возвращает системные контейнеры (наборы реплик) и сообщает процент недоступных. Если вы хотите использовать запрос для правила генерации оповещений Количество результатов, обратите внимание на закомментированные строки.

let startDateTime = 5m; // the minimum time interval goes here
let _minalertThreshold = 50; //Threshold for minimum and maximum unavailable or not running containers
let _maxalertThreshold = 70;
KubePodInventory
| where TimeGenerated >= ago(startDateTime)
| distinct ClusterName, TimeGenerated
| summarize Clustersnapshot = count() by ClusterName
| join kind=inner (
    KubePodInventory
    | where TimeGenerated >= ago(startDateTime)
    | where Namespace in('default', 'kube-system') and ControllerKind == 'ReplicaSet' // the system namespace filter goes here
    | distinct ClusterName, Computer, PodUid, TimeGenerated, PodStatus, ServiceName, PodLabel, Namespace, ContainerStatus
    | summarize arg_max(TimeGenerated, *), TotalPODCount = count(), podCount = sumif(1, PodStatus == 'Running' or PodStatus != 'Running'), containerNotrunning = sumif(1, ContainerStatus != 'running')
        by ClusterName, TimeGenerated, ServiceName, PodLabel, Namespace
    )
    on ClusterName
| project ClusterName, ServiceName, podCount, containerNotrunning, containerNotrunningPercent = (containerNotrunning * 100 / podCount), TimeGenerated, PodStatus, PodLabel, Namespace, Environment = tostring(split(ClusterName, '-')[3]), Location = tostring(split(ClusterName, '-')[4]), ContainerStatus
//Uncomment the below line to set for automated alert
//| where PodStatus == "Running" and containerNotrunningPercent > _minalertThreshold and containerNotrunningPercent < _maxalertThreshold
| summarize arg_max(TimeGenerated, *), c_entry=count() by PodLabel, ServiceName, ClusterName
//Below lines are to parse the labels to identify the impacted service/component name
| extend parseLabel = replace(@'k8s-app', @'k8sapp', PodLabel)
| extend parseLabel = replace(@'app.kubernetes.io\\/component', @'appkubernetesiocomponent', parseLabel)
| extend parseLabel = replace(@'app.kubernetes.io\\/instance', @'appkubernetesioinstance', parseLabel)
| extend tags = todynamic(parseLabel)
| extend tag01 = todynamic(tags[0].app)
| extend tag02 = todynamic(tags[0].k8sapp)
| extend tag03 = todynamic(tags[0].appkubernetesiocomponent)
| extend tag04 = todynamic(tags[0].aadpodidbinding)
| extend tag05 = todynamic(tags[0].appkubernetesioinstance)
| extend tag06 = todynamic(tags[0].component)
| project ClusterName, TimeGenerated,
    ServiceName = strcat( ServiceName, tag01, tag02, tag03, tag04, tag05, tag06),
    ContainerUnavailable = strcat("Unavailable Percentage: ", containerNotrunningPercent),
    PodStatus = strcat("PodStatus: ", PodStatus), 
    ContainerStatus = strcat("Container Status: ", ContainerStatus)

Доступность системных контейнеров (наборов управляющих программ)

Этот запрос возвращает системные контейнеры (наборы управляющих программ) и сообщает процент недоступных. Если вы хотите использовать запрос для правила генерации оповещений Количество результатов, обратите внимание на закомментированные строки.

let startDateTime = 5m; // the minimum time interval goes here
let _minalertThreshold = 50; //Threshold for minimum and maximum unavailable or not running containers
let _maxalertThreshold = 70;
KubePodInventory
| where TimeGenerated >= ago(startDateTime)
| distinct ClusterName, TimeGenerated
| summarize Clustersnapshot = count() by ClusterName
| join kind=inner (
    KubePodInventory
    | where TimeGenerated >= ago(startDateTime)
    | where Namespace in('default', 'kube-system') and ControllerKind == 'DaemonSet' // the system namespace filter goes here
    | distinct ClusterName, Computer, PodUid, TimeGenerated, PodStatus, ServiceName, PodLabel, Namespace, ContainerStatus
    | summarize arg_max(TimeGenerated, *), TotalPODCount = count(), podCount = sumif(1, PodStatus == 'Running' or PodStatus != 'Running'), containerNotrunning = sumif(1, ContainerStatus != 'running')
        by ClusterName, TimeGenerated, ServiceName, PodLabel, Namespace
    )
    on ClusterName
| project ClusterName, ServiceName, podCount, containerNotrunning, containerNotrunningPercent = (containerNotrunning * 100 / podCount), TimeGenerated, PodStatus, PodLabel, Namespace, Environment = tostring(split(ClusterName, '-')[3]), Location = tostring(split(ClusterName, '-')[4]), ContainerStatus
//Uncomment the below line to set for automated alert
//| where PodStatus == "Running" and containerNotrunningPercent > _minalertThreshold and containerNotrunningPercent < _maxalertThreshold
| summarize arg_max(TimeGenerated, *), c_entry=count() by PodLabel, ServiceName, ClusterName
//Below lines are to parse the labels to identify the impacted service/component name
| extend parseLabel = replace(@'k8s-app', @'k8sapp', PodLabel)
| extend parseLabel = replace(@'app.kubernetes.io\\/component', @'appkubernetesiocomponent', parseLabel)
| extend parseLabel = replace(@'app.kubernetes.io\\/instance', @'appkubernetesioinstance', parseLabel)
| extend tags = todynamic(parseLabel)
| extend tag01 = todynamic(tags[0].app)
| extend tag02 = todynamic(tags[0].k8sapp)
| extend tag03 = todynamic(tags[0].appkubernetesiocomponent)
| extend tag04 = todynamic(tags[0].aadpodidbinding)
| extend tag05 = todynamic(tags[0].appkubernetesioinstance)
| extend tag06 = todynamic(tags[0].component)
| project ClusterName, TimeGenerated,
    ServiceName = strcat( ServiceName, tag01, tag02, tag03, tag04, tag05, tag06),
    ContainerUnavailable = strcat("Unavailable Percentage: ", containerNotrunningPercent),
    PodStatus = strcat("PodStatus: ", PodStatus), 
    ContainerStatus = strcat("Container Status: ", ContainerStatus)

Журналы контейнеров

Журналы контейнеров для AKS хранятся в таблице ContainerLogV2. Вы можете выполнить следующие примеры запросов, чтобы найти выходные данные журнала stderr/stdout из целевых модулей pod, развертываний или пространств имен.

Журналы контейнеров для определенного модуля pod, пространства имен и контейнера

ContainerLogV2
| where _ResourceId =~ "clusterResourceID" //update with resource ID
| where PodNamespace == "podNameSpace" //update with target namespace
| where PodName == "podName" //update with target pod
| where ContainerName == "containerName" //update with target container
| project TimeGenerated, Computer, ContainerId, LogMessage, LogSource

Журналы контейнеров для определенного развертывания

let KubePodInv = KubePodInventory
| where _ResourceId =~ "clusterResourceID" //update with resource ID
| where Namespace == "deploymentNamespace" //update with target namespace
| where ControllerKind == "ReplicaSet"
| extend deployment = reverse(substring(reverse(ControllerName), indexof(reverse(ControllerName), "-") + 1))
| where deployment == "deploymentName" //update with target deployment
| extend ContainerId = ContainerID
| summarize arg_max(TimeGenerated, *)  by deployment, ContainerId, PodStatus, ContainerStatus
| project deployment, ContainerId, PodStatus, ContainerStatus;

KubePodInv
| join
(
    ContainerLogV2
  | where TimeGenerated >= startTime and TimeGenerated < endTime
  | where PodNamespace == "deploymentNamespace" //update with target namespace
  | where PodName startswith "deploymentName" //update with target deployment
) on ContainerId
| project TimeGenerated, deployment, PodName, PodStatus, ContainerName, ContainerId, ContainerStatus, LogMessage, LogSource

Журналы контейнеров для любого сбоя pod в определенном пространстве имен

    let KubePodInv = KubePodInventory
    | where TimeGenerated >= startTime and TimeGenerated < endTime
    | where _ResourceId =~ "clustereResourceID" //update with resource ID
    | where Namespace == "podNamespace" //update with target namespace
    | where PodStatus == "Failed"
    | extend ContainerId = ContainerID
    | summarize arg_max(TimeGenerated, *)  by  ContainerId, PodStatus, ContainerStatus
    | project ContainerId, PodStatus, ContainerStatus;

    KubePodInv
    | join
    (
        ContainerLogV2
    | where TimeGenerated >= startTime and TimeGenerated < endTime
    | where PodNamespace == "podNamespace" //update with target namespace
    ) on ContainerId
    | project TimeGenerated, PodName, PodStatus, ContainerName, ContainerId, ContainerStatus, LogMessage, LogSource

Запросы визуализации аналитики контейнеров по умолчанию

Эти запросы создаются из готовых визуализаций из аналитических сведений о контейнерах . Вы можете использовать их, если вы включили настраиваемые параметры оптимизации затрат, вместо диаграмм по умолчанию.

Количество узлов по состоянию

Необходимые таблицы для этой диаграммы включают KubeNodeInventory.

 let trendBinSize = 5m;
 let maxListSize = 1000;
 let clusterId = 'clusterResourceID'; //update with resource ID
 
 let rawData = KubeNodeInventory 
| where ClusterId =~ clusterId 
| distinct ClusterId, TimeGenerated 
| summarize ClusterSnapshotCount = count() by Timestamp = bin(TimeGenerated, trendBinSize), ClusterId 
| join hint.strategy=broadcast ( KubeNodeInventory 
| where ClusterId =~ clusterId 
| summarize TotalCount = count(), ReadyCount = sumif(1, Status contains ('Ready')) by ClusterId, Timestamp = bin(TimeGenerated, trendBinSize) 
| extend NotReadyCount = TotalCount - ReadyCount ) on ClusterId, Timestamp 
| project ClusterId, Timestamp, TotalCount = todouble(TotalCount) / ClusterSnapshotCount, ReadyCount = todouble(ReadyCount) / ClusterSnapshotCount, NotReadyCount = todouble(NotReadyCount) / ClusterSnapshotCount;

 rawData 
| order by Timestamp asc 
| summarize makelist(Timestamp, maxListSize), makelist(TotalCount, maxListSize), makelist(ReadyCount, maxListSize), makelist(NotReadyCount, maxListSize) by ClusterId 
| join ( rawData 
| summarize Avg_TotalCount = avg(TotalCount), Avg_ReadyCount = avg(ReadyCount), Avg_NotReadyCount = avg(NotReadyCount) by ClusterId ) on ClusterId 
| project ClusterId, Avg_TotalCount, Avg_ReadyCount, Avg_NotReadyCount, list_Timestamp, list_TotalCount, list_ReadyCount, list_NotReadyCount 

Количество модулей Pod по состоянию

Необходимые таблицы для этой диаграммы включают KubePodInventory.

 let trendBinSize = 5m;
 let maxListSize = 1000;
 let clusterId = 'clusterResourceID'; //update with resource ID
 
 let rawData = KubePodInventory 
| where ClusterId =~ clusterId 
| distinct ClusterId, TimeGenerated 
| summarize ClusterSnapshotCount = count() by bin(TimeGenerated, trendBinSize), ClusterId 
| join hint.strategy=broadcast ( KubePodInventory 
| where ClusterId =~ clusterId 
| summarize PodStatus=any(PodStatus) by TimeGenerated, PodUid, ClusterId 
| summarize TotalCount = count(), PendingCount = sumif(1, PodStatus =~ 'Pending'), RunningCount = sumif(1, PodStatus =~ 'Running'), SucceededCount = sumif(1, PodStatus =~ 'Succeeded'), FailedCount = sumif(1, PodStatus =~ 'Failed'), TerminatingCount = sumif(1, PodStatus =~ 'Terminating') by ClusterId, bin(TimeGenerated, trendBinSize) ) on ClusterId, TimeGenerated 
| extend UnknownCount = TotalCount - PendingCount - RunningCount - SucceededCount - FailedCount - TerminatingCount 
| project ClusterId, Timestamp = TimeGenerated, TotalCount = todouble(TotalCount) / ClusterSnapshotCount, PendingCount = todouble(PendingCount) / ClusterSnapshotCount, RunningCount = todouble(RunningCount) / ClusterSnapshotCount, SucceededCount = todouble(SucceededCount) / ClusterSnapshotCount, FailedCount = todouble(FailedCount) / ClusterSnapshotCount, TerminatingCount = todouble(TerminatingCount) / ClusterSnapshotCount, UnknownCount = todouble(UnknownCount) / ClusterSnapshotCount;

 let rawDataCached = rawData;
 
 rawDataCached 
| order by Timestamp asc 
| summarize makelist(Timestamp, maxListSize), makelist(TotalCount, maxListSize), makelist(PendingCount, maxListSize), makelist(RunningCount, maxListSize), makelist(SucceededCount, maxListSize), makelist(FailedCount, maxListSize), makelist(TerminatingCount, maxListSize), makelist(UnknownCount, maxListSize) by ClusterId 
| join ( rawDataCached 
| summarize Avg_TotalCount = avg(TotalCount), Avg_PendingCount = avg(PendingCount), Avg_RunningCount = avg(RunningCount), Avg_SucceededCount = avg(SucceededCount), Avg_FailedCount = avg(FailedCount), Avg_TerminatingCount = avg(TerminatingCount), Avg_UnknownCount = avg(UnknownCount) by ClusterId ) on ClusterId 
| project ClusterId, Avg_TotalCount, Avg_PendingCount, Avg_RunningCount, Avg_SucceededCount, Avg_FailedCount, Avg_TerminatingCount, Avg_UnknownCount, list_Timestamp, list_TotalCount, list_PendingCount, list_RunningCount, list_SucceededCount, list_FailedCount, list_TerminatingCount, list_UnknownCount 

Список контейнеров по состоянию

Необходимые таблицы для этой диаграммы включают KubePodInventory и Perf.

 let startDateTime = datetime('start time');
 let endDateTime = datetime('end time');
 let trendBinSize = 15m;
 let maxResultCount = 10000;
 let metricUsageCounterName = 'cpuUsageNanoCores';
 let metricLimitCounterName = 'cpuLimitNanoCores';
 
 let KubePodInventoryTable = KubePodInventory 
| where TimeGenerated >= startDateTime 
| where TimeGenerated < endDateTime 
| where isnotempty(ClusterName) 
| where isnotempty(Namespace) 
| where isnotempty(Computer) 
| project TimeGenerated, ClusterId, ClusterName, Namespace, ServiceName, ControllerName, Node = Computer, Pod = Name, ContainerInstance = ContainerName, ContainerID, ReadySinceNow = format_timespan(endDateTime - ContainerCreationTimeStamp , 'ddd.hh:mm:ss.fff'), Restarts = ContainerRestartCount, Status = ContainerStatus, ContainerStatusReason = columnifexists('ContainerStatusReason', ''), ControllerKind = ControllerKind, PodStatus;

 let startRestart = KubePodInventoryTable 
| summarize arg_min(TimeGenerated, *) by Node, ContainerInstance 
| where ClusterId =~ 'clusterResourceID' //update with resource ID
| project Node, ContainerInstance, InstanceName = strcat(ClusterId, '/', ContainerInstance), StartRestart = Restarts;

 let IdentityTable = KubePodInventoryTable 
| summarize arg_max(TimeGenerated, *) by Node, ContainerInstance 
| where ClusterId =~ 'clusterResourceID' //update with resource ID
| project ClusterName, Namespace, ServiceName, ControllerName, Node, Pod, ContainerInstance, InstanceName = strcat(ClusterId, '/', ContainerInstance), ContainerID, ReadySinceNow, Restarts, Status = iff(Status =~ 'running', 0, iff(Status=~'waiting', 1, iff(Status =~'terminated', 2, 3))), ContainerStatusReason, ControllerKind, Containers = 1, ContainerName = tostring(split(ContainerInstance, '/')[1]), PodStatus, LastPodInventoryTimeGenerated = TimeGenerated, ClusterId;

 let CachedIdentityTable = IdentityTable;
 
 let FilteredPerfTable = Perf 
| where TimeGenerated >= startDateTime 
| where TimeGenerated < endDateTime 
| where ObjectName == 'K8SContainer' 
| where InstanceName startswith 'clusterResourceID' 
| project Node = Computer, TimeGenerated, CounterName, CounterValue, InstanceName ;

 let CachedFilteredPerfTable = FilteredPerfTable;
 
 let LimitsTable = CachedFilteredPerfTable 
| where CounterName =~ metricLimitCounterName 
| summarize arg_max(TimeGenerated, *) by Node, InstanceName 
| project Node, InstanceName, LimitsValue = iff(CounterName =~ 'cpuLimitNanoCores', CounterValue/1000000, CounterValue), TimeGenerated;
 let MetaDataTable = CachedIdentityTable 
| join kind=leftouter ( LimitsTable ) on Node, InstanceName 
| join kind= leftouter ( startRestart ) on Node, InstanceName 
| project ClusterName, Namespace, ServiceName, ControllerName, Node, Pod, InstanceName, ContainerID, ReadySinceNow, Restarts, LimitsValue, Status, ContainerStatusReason = columnifexists('ContainerStatusReason', ''), ControllerKind, Containers, ContainerName, ContainerInstance, StartRestart, PodStatus, LastPodInventoryTimeGenerated, ClusterId;

 let UsagePerfTable = CachedFilteredPerfTable 
| where CounterName =~ metricUsageCounterName 
| project TimeGenerated, Node, InstanceName, CounterValue = iff(CounterName =~ 'cpuUsageNanoCores', CounterValue/1000000, CounterValue);

 let LastRestartPerfTable = CachedFilteredPerfTable 
| where CounterName =~ 'restartTimeEpoch' 
| summarize arg_max(TimeGenerated, *) by Node, InstanceName 
| project Node, InstanceName, UpTime = CounterValue, LastReported = TimeGenerated;

 let AggregationTable = UsagePerfTable 
| summarize Aggregation = max(CounterValue) by Node, InstanceName 
| project Node, InstanceName, Aggregation;

 let TrendTable = UsagePerfTable 
| summarize TrendAggregation = max(CounterValue) by bin(TimeGenerated, trendBinSize), Node, InstanceName 
| project TrendTimeGenerated = TimeGenerated, Node, InstanceName , TrendAggregation 
| summarize TrendList = makelist(pack("timestamp", TrendTimeGenerated, "value", TrendAggregation)) by Node, InstanceName;

 let containerFinalTable = MetaDataTable 
| join kind= leftouter( AggregationTable ) on Node, InstanceName 
| join kind = leftouter (LastRestartPerfTable) on Node, InstanceName 
| order by Aggregation desc, ContainerName 
| join kind = leftouter ( TrendTable) on Node, InstanceName 
| extend ContainerIdentity = strcat(ContainerName, ' ', Pod) 
| project ContainerIdentity, Status, ContainerStatusReason = columnifexists('ContainerStatusReason', ''), Aggregation, Node, Restarts, ReadySinceNow, TrendList = iif(isempty(TrendList), parse_json('[]'), TrendList), LimitsValue, ControllerName, ControllerKind, ContainerID, Containers, UpTimeNow = datetime_diff('Millisecond', endDateTime, datetime_add('second', toint(UpTime), make_datetime(1970,1,1))), ContainerInstance, StartRestart, LastReportedDelta = datetime_diff('Millisecond', endDateTime, LastReported), PodStatus, InstanceName, Namespace, LastPodInventoryTimeGenerated, ClusterId;
containerFinalTable 
| limit 200

Список контроллеров по состоянию

Необходимые таблицы для этой диаграммы включают KubePodInventory и Perf.

 let endDateTime = datetime('start time');
 let startDateTime = datetime('end time');
 let trendBinSize = 15m;
 let metricLimitCounterName = 'cpuLimitNanoCores';
 let metricUsageCounterName = 'cpuUsageNanoCores';
 
 let primaryInventory = KubePodInventory 
| where TimeGenerated >= startDateTime 
| where TimeGenerated < endDateTime 
| where isnotempty(ClusterName) 
| where isnotempty(Namespace) 
| extend Node = Computer 
| where ClusterId =~ 'clusterResourceID' //update with resource ID
| project TimeGenerated, ClusterId, ClusterName, Namespace, ServiceName, Node = Computer, ControllerName, Pod = Name, ContainerInstance = ContainerName, ContainerID, InstanceName, PerfJoinKey = strcat(ClusterId, '/', ContainerName), ReadySinceNow = format_timespan(endDateTime - ContainerCreationTimeStamp, 'ddd.hh:mm:ss.fff'), Restarts = ContainerRestartCount, Status = ContainerStatus, ContainerStatusReason = columnifexists('ContainerStatusReason', ''), ControllerKind = ControllerKind, PodStatus, ControllerId = strcat(ClusterId, '/', Namespace, '/', ControllerName);

let podStatusRollup = primaryInventory 
| summarize arg_max(TimeGenerated, *) by Pod 
| project ControllerId, PodStatus, TimeGenerated 
| summarize count() by ControllerId, PodStatus = iif(TimeGenerated < ago(30m), 'Unknown', PodStatus) 
| summarize PodStatusList = makelist(pack('Status', PodStatus, 'Count', count_)) by ControllerId;

let latestContainersByController = primaryInventory 
| where isnotempty(Node) 
| summarize arg_max(TimeGenerated, *) by PerfJoinKey 
| project ControllerId, PerfJoinKey;

let filteredPerformance = Perf 
| where TimeGenerated >= startDateTime 
| where TimeGenerated < endDateTime 
| where ObjectName == 'K8SContainer' 
| where InstanceName startswith 'clusterResourceID' //update with resource ID
| project TimeGenerated, CounterName, CounterValue, InstanceName, Node = Computer ;

let metricByController = filteredPerformance 
| where CounterName =~ metricUsageCounterName 
| extend PerfJoinKey = InstanceName 
| summarize Value = percentile(CounterValue, 95) by PerfJoinKey, CounterName 
| join (latestContainersByController) on PerfJoinKey 
| summarize Value = sum(Value) by ControllerId, CounterName 
| project ControllerId, CounterName, AggregationValue = iff(CounterName =~ 'cpuUsageNanoCores', Value/1000000, Value);

let containerCountByController = latestContainersByController 
| summarize ContainerCount = count() by ControllerId;

let restartCountsByController = primaryInventory 
| summarize Restarts = max(Restarts) by ControllerId;

let oldestRestart = primaryInventory 
| summarize ReadySinceNow = min(ReadySinceNow) by ControllerId;

let trendLineByController = filteredPerformance 
| where CounterName =~ metricUsageCounterName 
| extend PerfJoinKey = InstanceName 
| summarize Value = percentile(CounterValue, 95) by bin(TimeGenerated, trendBinSize), PerfJoinKey, CounterName 
| order by TimeGenerated asc 
| join kind=leftouter (latestContainersByController) on PerfJoinKey 
| summarize Value=sum(Value) by ControllerId, TimeGenerated, CounterName 
| project TimeGenerated, Value = iff(CounterName =~ 'cpuUsageNanoCores', Value/1000000, Value), ControllerId 
| summarize TrendList = makelist(pack("timestamp", TimeGenerated, "value", Value)) by ControllerId;

let latestLimit = filteredPerformance 
| where CounterName =~ metricLimitCounterName 
| extend PerfJoinKey = InstanceName 
| summarize arg_max(TimeGenerated, *) by PerfJoinKey 
| join kind=leftouter (latestContainersByController) on PerfJoinKey 
| summarize Value = sum(CounterValue) by ControllerId, CounterName 
| project ControllerId, LimitValue = iff(CounterName =~ 'cpuLimitNanoCores', Value/1000000, Value);

let latestTimeGeneratedByController = primaryInventory 
| summarize arg_max(TimeGenerated, *) by ControllerId 
| project ControllerId, LastTimeGenerated = TimeGenerated;

primaryInventory 
| distinct ControllerId, ControllerName, ControllerKind, Namespace 
| join kind=leftouter (podStatusRollup) on ControllerId 
| join kind=leftouter (metricByController) on ControllerId 
| join kind=leftouter (containerCountByController) on ControllerId 
| join kind=leftouter (restartCountsByController) on ControllerId 
| join kind=leftouter (oldestRestart) on ControllerId 
| join kind=leftouter (trendLineByController) on ControllerId 
| join kind=leftouter (latestLimit) on ControllerId 
| join kind=leftouter (latestTimeGeneratedByController) on ControllerId 
| project ControllerId, ControllerName, ControllerKind, PodStatusList, AggregationValue, ContainerCount = iif(isempty(ContainerCount), 0, ContainerCount), Restarts, ReadySinceNow, Node = '-', TrendList, LimitValue, LastTimeGenerated, Namespace 
| limit 250;

Список узлов по состоянию

Необходимые таблицы для этой диаграммы включают KubeNodeInventory, KubePodInventory и Perf.

 let endDateTime = datetime('start time');
 let startDateTime = datetime('end time');
 let binSize = 15m;
 let limitMetricName = 'cpuCapacityNanoCores';
 let usedMetricName = 'cpuUsageNanoCores'; 
 
 let materializedNodeInventory = KubeNodeInventory 
| where TimeGenerated < endDateTime 
| where TimeGenerated >= startDateTime 
| project ClusterName, ClusterId, Node = Computer, TimeGenerated, Status, NodeName = Computer, NodeId = strcat(ClusterId, '/', Computer), Labels 
| where ClusterId =~ 'clusterResourceID'; //update with resource ID

 let materializedPerf = Perf 
| where TimeGenerated < endDateTime 
| where TimeGenerated >= startDateTime 
| where ObjectName == 'K8SNode' 
| extend NodeId = InstanceName;

 let materializedPodInventory = KubePodInventory 
| where TimeGenerated < endDateTime 
| where TimeGenerated >= startDateTime 
| where isnotempty(ClusterName) 
| where isnotempty(Namespace) 
| where ClusterId =~ 'clusterResourceID'; //update with resource ID

 let inventoryOfCluster = materializedNodeInventory 
| summarize arg_max(TimeGenerated, Status) by ClusterName, ClusterId, NodeName, NodeId;

 let labelsByNode = materializedNodeInventory 
| summarize arg_max(TimeGenerated, Labels) by ClusterName, ClusterId, NodeName, NodeId;

 let countainerCountByNode = materializedPodInventory 
| project ContainerName, NodeId = strcat(ClusterId, '/', Computer) 
| distinct NodeId, ContainerName 
| summarize ContainerCount = count() by NodeId;

 let latestUptime = materializedPerf 
| where CounterName == 'restartTimeEpoch' 
| summarize arg_max(TimeGenerated, CounterValue) by NodeId 
| extend UpTimeMs = datetime_diff('Millisecond', endDateTime, datetime_add('second', toint(CounterValue), make_datetime(1970,1,1))) 
| project NodeId, UpTimeMs;

 let latestLimitOfNodes = materializedPerf 
| where CounterName == limitMetricName 
| summarize CounterValue = max(CounterValue) by NodeId 
| project NodeId, LimitValue = CounterValue;

 let actualUsageAggregated = materializedPerf 
| where CounterName == usedMetricName 
| summarize Aggregation = percentile(CounterValue, 95) by NodeId //This line updates to the desired aggregation
| project NodeId, Aggregation;

 let aggregateTrendsOverTime = materializedPerf 
| where CounterName == usedMetricName 
| summarize TrendAggregation = percentile(CounterValue, 95) by NodeId, bin(TimeGenerated, binSize) //This line updates to the desired aggregation
| project NodeId, TrendAggregation, TrendDateTime = TimeGenerated;

 let unscheduledPods = materializedPodInventory 
| where isempty(Computer) 
| extend Node = Computer 
| where isempty(ContainerStatus) 
| where PodStatus == 'Pending' 
| order by TimeGenerated desc 
| take 1 
| project ClusterName, NodeName = 'unscheduled', LastReceivedDateTime = TimeGenerated, Status = 'unscheduled', ContainerCount = 0, UpTimeMs = '0', Aggregation = '0', LimitValue = '0', ClusterId;

 let scheduledPods = inventoryOfCluster 
| join kind=leftouter (aggregateTrendsOverTime) on NodeId 
| extend TrendPoint = pack("TrendTime", TrendDateTime, "TrendAggregation", TrendAggregation) 
| summarize make_list(TrendPoint) by NodeId, NodeName, Status 
| join kind=leftouter (labelsByNode) on NodeId 
| join kind=leftouter (countainerCountByNode) on NodeId 
| join kind=leftouter (latestUptime) on NodeId 
| join kind=leftouter (latestLimitOfNodes) on NodeId 
| join kind=leftouter (actualUsageAggregated) on NodeId 
| project ClusterName, NodeName, ClusterId, list_TrendPoint, LastReceivedDateTime = TimeGenerated, Status, ContainerCount, UpTimeMs, Aggregation, LimitValue, Labels 
| limit 250;

 union (scheduledPods), (unscheduledPods) 
| project ClusterName, NodeName, LastReceivedDateTime, Status, ContainerCount, UpTimeMs = UpTimeMs_long, Aggregation = Aggregation_real, LimitValue = LimitValue_real, list_TrendPoint, Labels, ClusterId 

Метрики Prometheus

В следующих примерах требуется конфигурация, описанная в разделе "Отправка метрик Prometheus" в рабочую область Log Analytics с помощью аналитики контейнеров.

Чтобы просмотреть метрики Prometheus, скребованные Azure Monitor и отфильтрованные по пространству имен, укажите "prometheus". Вот пример запроса на просмотр метрик Prometheus из пространства имен default в Kubernetes.

InsightsMetrics 
| where Namespace contains "prometheus"
| extend tags=parse_json(Tags)
| summarize count() by Name

Данные Prometheus также можно запрашивать напрямую по имени.

InsightsMetrics 
| where Namespace contains "prometheus"
| where Name contains "some_prometheus_metric"

Чтобы определить объем приема для каждого размера метрики в ГБ в день и понять, насколько он велик, предоставляется следующий запрос.

InsightsMetrics
| where Namespace contains "prometheus"
| where TimeGenerated > ago(24h)
| summarize VolumeInGB = (sum(_BilledSize) / (1024 * 1024 * 1024)) by Name
| order by VolumeInGB desc
| render barchart

Выходные данные будут содержать результаты, аналогичные тем, что приведены в примере ниже.

Снимок экрана: результаты запроса к журналу по объему приема данных.

Чтобы оценить размер каждой метрики в ГБ в месяц, чтобы понять, велик ли объем данных, полученных в рабочей области, предоставляется следующий запрос.

InsightsMetrics
| where Namespace contains "prometheus"
| where TimeGenerated > ago(24h)
| summarize EstimatedGBPer30dayMonth = (sum(_BilledSize) / (1024 * 1024 * 1024)) * 30 by Name
| order by EstimatedGBPer30dayMonth desc
| render barchart

Выходные данные будут содержать результаты, аналогичные тем, что приведены в примере ниже.

Снимок экрана: результаты запроса к журналу по объему приема данных.

Ошибки конфигурации или очистки

Чтобы проверить наличие ошибок конфигурации или извлечения, приведенный ниже пример запроса возвращает информационные события из таблицы KubeMonAgentEvents.

KubeMonAgentEvents | where Level != "Info" 

В выходных данных показаны результаты, подобные следующему примеру:

Снимок экрана: результаты запроса к журналу для получения информационных событий от агента.

Часто задаваемые вопросы

В этом разделы приводятся ответы на часто задаваемые вопросы.

Можно ли просматривать собранные метрики в средстве Grafana?

Аналитика контейнеров поддерживает просмотр метрик, хранящихся в рабочей области Log Analytics на панелях мониторинга Grafana. Мы предоставили шаблон, который можно скачать из репозитория панели мониторинга Grafana. Используйте его для начала работы и в качестве ссылки, чтобы узнать, как запрашивать данные из отслеживаемых кластеров для визуализации в пользовательских панелях мониторинга Grafana.

Почему строки журнала размером более 16 КБ разделяются на несколько записей в Log Analytics?

Агент использует драйвер ведения журнала файла DOCKER JSON для записи stdout и stderr контейнеров. Этот драйвер ведения журнала разбивает строки журнала размером более 16 КБ на несколько строк при копировании из stdout или stderr в файл. Используйте многострочный журнал для получения размера записи журнала до 64 КБ.

Следующие шаги

Аналитика контейнеров не включает предопределенный набор оповещений. Чтобы узнать, как создавать рекомендуемые оповещения для высокой загрузки ЦП и памяти с целью поддержки DevOps или рабочих процессов и процедур, ознакомьтесь со статьей Создание оповещений о производительности с помощью аналитики контейнеров.