microsoftml.featurize_image: преобразование изображения в признаки
Использование
microsoftml.featurize_image(cols: [dict, str], dnn_model: ['Resnet18',
'Resnet50', 'Resnet101', 'Alexnet'] = 'Resnet18', **kargs)
Описание
Делит изображение на компоненты, используя предварительно обученную модель глубокой нейронной сети.
Сведения
featurize_image
конструирует признаки из изображения, используя определенную предварительно обученную модель глубокой нейронной сети. Входные переменные для этого преобразования должны быть извлеченными пиксельными значениями.
Аргументы
cols
Входная переменная, содержащая извлеченные пиксельные значения. Если значение равно dict
, ключи представляют имена новых переменных, которые будут созданы.
dnn_model
Предварительно обученная глубокая нейронная сеть. Возможными вариантами являются следующие.
"Resnet18"
"Resnet50"
"Resnet101"
"Alexnet"
Значение по умолчанию — "Resnet18"
.
Дополнительные сведения о ResNet см. в статье, посвященной остаточному глубокому обучению для распознавания изображений.
kargs
Дополнительные аргументы, отправляемые в подсистему вычислений.
Возвращаемое значение
Объект, определяющий преобразование.
См. также
load_image
, resize_image
, extract_pixels
.
Пример
'''
Example with images.
'''
import numpy
import pandas
from microsoftml import rx_neural_network, rx_predict, rx_fast_linear
from microsoftml import load_image, resize_image, extract_pixels
from microsoftml.datasets.image import get_RevolutionAnalyticslogo
train = pandas.DataFrame(data=dict(Path=[get_RevolutionAnalyticslogo()], Label=[True]))
# Loads the images from variable Path, resizes the images to 1x1 pixels
# and trains a neural net.
model1 = rx_neural_network("Label ~ Features", data=train,
ml_transforms=[
load_image(cols=dict(Features="Path")),
resize_image(cols="Features", width=1, height=1, resizing="Aniso"),
extract_pixels(cols="Features")],
ml_transform_vars=["Path"],
num_hidden_nodes=1, num_iterations=1)
# Featurizes the images from variable Path using the default model, and trains a linear model on the result.
# If dnnModel == "AlexNet", the image has to be resized to 227x227.
model2 = rx_fast_linear("Label ~ Features ", data=train,
ml_transforms=[
load_image(cols=dict(Features="Path")),
resize_image(cols="Features", width=224, height=224),
extract_pixels(cols="Features")],
ml_transform_vars=["Path"], max_iterations=1)
# We predict even if it does not make too much sense on this single image.
print("\nrx_neural_network")
prediction1 = rx_predict(model1, data=train)
print(prediction1)
print("\nrx_fast_linear")
prediction2 = rx_predict(model2, data=train)
print(prediction2)
Выходные данные:
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Using: AVX Math
***** Net definition *****
input Data [3];
hidden H [1] sigmoid { // Depth 1
from Data all;
}
output Result [1] sigmoid { // Depth 0
from H all;
}
***** End net definition *****
Input count: 3
Output count: 1
Output Function: Sigmoid
Loss Function: LogLoss
PreTrainer: NoPreTrainer
___________________________________________________________________
Starting training...
Learning rate: 0.001000
Momentum: 0.000000
InitWtsDiameter: 0.100000
___________________________________________________________________
Initializing 1 Hidden Layers, 6 Weights...
Estimated Pre-training MeanError = 0.707823
Iter:1/1, MeanErr=0.707823(0.00%), 0.01M WeightUpdates/sec
Done!
Estimated Post-training MeanError = 0.707499
___________________________________________________________________
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.0751759
Elapsed time: 00:00:00.0080433
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Using 2 threads to train.
Automatically choosing a check frequency of 2.
Auto-tuning parameters: L2 = 5.
Auto-tuning parameters: L1Threshold (L1/L2) = 1.
Using model from last iteration.
Not training a calibrator because it is not needed.
Elapsed time: 00:00:01.0104773
Elapsed time: 00:00:00.0106935
rx_neural_network
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0420328
Finished writing 1 rows.
Writing completed.
PredictedLabel Score Probability
0 False -0.028504 0.492875
rx_fast_linear
Beginning processing data.
Rows Read: 1, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.4449623
Finished writing 1 rows.
Writing completed.
PredictedLabel Score Probability
0 False 0.0 0.5