Ескертпе
Бұл бетке кіру үшін қатынас шегін айқындау қажет. Жүйеге кіруді немесе каталогтарды өзгертуді байқап көруге болады.
Бұл бетке кіру үшін қатынас шегін айқындау қажет. Каталогтарды өзгертуді байқап көруге болады.
Использование
microsoftml.get_sentiment(cols: [str, dict, list], **kargs)
Описание
Оценка текста на естественном языке и проверка вероятности того, что тональности положительные.
Сведения
Преобразование get_sentiment возвращает вероятность того, что тональность естественного текста является положительной. поддерживает только английский язык;
Аргументы
cols
Строка символов или список имен переменных для преобразования. Если значение равно dict, имена представляют имена новых переменных, которые будут созданы.
kargs
Дополнительные аргументы, отправляемые в подсистему вычислений.
Возвращаемое значение
Объект, определяющий преобразование.
См. также раздел
Пример
'''
Example with get_sentiment and rx_logistic_regression.
'''
import numpy
import pandas
from microsoftml import rx_logistic_regression, rx_featurize, rx_predict, get_sentiment
# Create the data
customer_reviews = pandas.DataFrame(data=dict(review=[
"I really did not like the taste of it",
"It was surprisingly quite good!",
"I will never ever ever go to that place again!!"]))
# Get the sentiment scores
sentiment_scores = rx_featurize(
data=customer_reviews,
ml_transforms=[get_sentiment(cols=dict(scores="review"))])
# Let's translate the score to something more meaningful
sentiment_scores["eval"] = sentiment_scores.scores.apply(
lambda score: "AWESOMENESS" if score > 0.6 else "BLAH")
print(sentiment_scores)
Выходные данные:
Beginning processing data.
Rows Read: 3, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:02.4327924
Finished writing 3 rows.
Writing completed.
review scores eval
0 I really did not like the taste of it 0.461790 BLAH
1 It was surprisingly quite good! 0.960192 AWESOMENESS
2 I will never ever ever go to that place again!! 0.310344 BLAH