Ескертпе
Бұл бетке кіру үшін қатынас шегін айқындау қажет. Жүйеге кіруді немесе каталогтарды өзгертуді байқап көруге болады.
Бұл бетке кіру үшін қатынас шегін айқындау қажет. Каталогтарды өзгертуді байқап көруге болады.
Использование
microsoftml.rx_featurize(data: typing.Union[revoscalepy.datasource.RxDataSource.RxDataSource,
pandas.core.frame.DataFrame],
output_data: typing.Union[revoscalepy.datasource.RxDataSource.RxDataSource,
str] = None, overwrite: bool = False,
data_threads: int = None, random_seed: int = None,
max_slots: int = 5000, ml_transforms: list = None,
ml_transform_vars: list = None, row_selection: str = None,
transforms: dict = None, transform_objects: dict = None,
transform_function: str = None,
transform_variables: list = None,
transform_packages: list = None,
transform_environment: dict = None, blocks_per_read: int = None,
report_progress: int = None, verbose: int = 1,
compute_context: revoscalepy.computecontext.RxComputeContext.RxComputeContext = None)
Описание
Преобразует данные из набора входных данных в набор выходных данных.
Аргументы
.
Объект источника данных revoscalepy, кадр данных или путь к файлу .xdf.
output_data
Выходной текст или имя XDF-файла или источника данных RxDataSource с возможностями записи, в котором необходимо сохранить преобразованные данные. Если указано значение None, то возвращается кадр данных. Значение по умолчанию — None.
перезапись
Если указано значение True, существующий output_data перезаписывается; если указано значение False, существующий output_data не перезаписывается. Значение по умолчанию — False.
data_threads
Целое число, указывающее требуемую степень параллелизма в конвейере данных. Если указано значение None, количество используемых потоков определяется внутренне. Значение по умолчанию — None.
random_seed
Задает случайное начальное значение. Значение по умолчанию — None.
max_slots
Максимальное число слотов, возвращаемых для столбцов со значениями вектора (для возврата всех значений укажите значение <=0).
ml_transforms
Указывает список преобразований Машинного обучения Майкрософт, которые необходимо выполнить с данными до обучения, или значение None, если преобразования не нужно выполнять. Сведения о поддерживаемых трансформациях см. в разделах featurize_text, categorical и categorical_hash.
Эти преобразования выполняются после любых заданных преобразований Python.
Значение по умолчанию — None.
ml_transform_vars
Указывает символьный вектор имен переменных, используемых в ml_transforms, или значение None, если их не нужно использовать.
Значение по умолчанию — None.
row_selection
НЕ ПОДДЕРЖИВАЕТСЯ. Указывает записи (наблюдения) из набора данных, которые будут использоваться моделью с именем логической переменной из набора данных (в кавычках) или логическим выражением с указанием переменных в наборе данных. Пример:
row_selection = "old"будет использовать только те наблюдения, в которых значение переменнойoldравноTrue.row_selection = (age > 20) & (age < 65) & (log(income) > 10)использует только те наблюдения, в которых значение переменнойageнаходится в диапазоне от 20 до 65, а значениеlogпеременнойincomeбольше 10.
Выбор записей осуществляется после обработки всех преобразований данных (см. аргументы transforms или transform_function). Как и со всеми выражениями, row_selection можно определить за пределами вызова функции с помощью функции expression.
преобразования
НЕ ПОДДЕРЖИВАЕТСЯ. Выражение формы, представляющее первый круг преобразования переменных. Как и со всеми выражениями, transforms (или row_selection) можно определить за пределами вызова функции с помощью функции expression.
Значение по умолчанию — None.
transform_objects
НЕ ПОДДЕРЖИВАЕТСЯ. Именованный список с объектами, на которые можно ссылаться с помощью transforms, transform_function и row_selection. Значение по умолчанию — None.
transform_function
Функция преобразования переменной. Значение по умолчанию — None.
transform_variables
Символьный вектор для переменных входного набора данных, требуемый для функции преобразования. Значение по умолчанию — None.
transform_packages
НЕ ПОДДЕРЖИВАЕТСЯ. Символьный вектор, определяющий дополнительные пакеты Python (за исключением пакетов, указанных в RxOptions.get_option("transform_packages")), которые будут доступны и предварительно загружены для использования в функциях преобразования переменных.
Например, явно определенные в функциях revoscalepy через свои аргументы transforms и transform_function или неявно определенные через свои аргументы formula или row_selection. Аргумент transform_packages также может иметь значение None, указывающее на то, что пакеты, указанные за пределами RxOptions.get_option("transform_packages"), не будут предварительно загружаться.
transform_environment
НЕ ПОДДЕРЖИВАЕТСЯ. Определяемая пользователем среда, выступающая в роли родительской среды для всех разработанных внутренних сред и используемая для преобразования данных переменных.
При transform_environment = Noneзначении используется новая "хэш-среда" с родительским revoscalepy.baseenv. Значение по умолчанию — None.
blocks_per_read
Указывает количество считываемых блоков для каждого фрагмента данных, считываемого из источника данных.
report_progress
Целочисленное значение, указывающее уровень информирования по ходу обработки строки:
0— информирование не осуществляется.1— выводится и обновляется число обработанных записей.2— выводятся данные об обработанных записях и времени обработки.3— выводятся данные об обработанных записях и все данные о времени обработки.
Значение по умолчанию — 1.
verbose
Целочисленное значение, указывающее требуемый объем выходных данных.
Если задано значение 0, при вычислениях подробные выходные данные не выводятся. Целочисленные значения из диапазона от 1 до 4 позволяют увеличить объем информации.
Значение по умолчанию — 1.
compute_context
Задает контекст, в котором выполняются вычисления, указанные с помощью допустимого значения revoscalepy.RxComputeContext. Сейчас поддерживаются локальные контексты и контексты вычислений revoscalepy.RxInSqlServer.
Возвращаемое значение
Кадр данных или объект revoscalepy.RxDataSource, представляющий созданные выходные данные.
См. также
rx_predict, revoscalepy.rx_data_step, revoscalepy.rx_import.
Пример
'''
Example with rx_featurize.
'''
import numpy
import pandas
from microsoftml import rx_featurize, categorical
# rx_featurize basically allows you to access data from the MicrosoftML transforms
# In this example we'll look at getting the output of the categorical transform
# Create the data
categorical_data = pandas.DataFrame(data=dict(places_visited=[
"London", "Brunei", "London", "Paris", "Seria"]),
dtype="category")
print(categorical_data)
# Invoke the categorical transform
categorized = rx_featurize(data=categorical_data,
ml_transforms=[categorical(cols=dict(xdatacat="places_visited"))])
# Now let's look at the data
print(categorized)
Выходные данные:
places_visited
0 London
1 Brunei
2 London
3 Paris
4 Seria
Beginning processing data.
Rows Read: 5, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 5, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0521300
Finished writing 5 rows.
Writing completed.
places_visited xdatacat.London xdatacat.Brunei xdatacat.Paris \
0 London 1.0 0.0 0.0
1 Brunei 0.0 1.0 0.0
2 London 1.0 0.0 0.0
3 Paris 0.0 0.0 1.0
4 Seria 0.0 0.0 0.0
xdatacat.Seria
0 0.0
1 0.0
2 0.0
3 0.0
4 1.0