quantize_fl()
Applies to: ✅ Microsoft Fabric ✅ Azure Data Explorer ✅ Azure Monitor ✅ Microsoft Sentinel
The function quantize_fl()
is a user-defined function (UDF) that bins metric columns. It quantizes metric columns to categorical labels, based on the K-Means algorithm.
Prerequisites
- The Python plugin must be enabled on the cluster. This is required for the inline Python used in the function.
- The Python plugin must be enabled on the database. This is required for the inline Python used in the function.
Syntax
T | invoke quantize_fl(
num_bins,
in_cols,
out_cols [,
labels ])
Learn more about syntax conventions.
Parameters
Name | Type | Required | Description |
---|---|---|---|
num_bins | int |
✔️ | The required number of bins. |
in_cols | dynamic |
✔️ | An array containing the names of the columns to quantize. |
out_cols | dynamic |
✔️ | An array containing the names of the respective output columns for the binned values. |
labels | dynamic |
An array containing the label names. If unspecified, bin ranges will be used. |
Function definition
You can define the function by either embedding its code as a query-defined function, or creating it as a stored function in your database, as follows:
Define the function using the following let statement. No permissions are required.
Important
A let statement can't run on its own. It must be followed by a tabular expression statement. To run a working example of quantize_fl()
, see Example.
let quantize_fl=(tbl:(*), num_bins:int, in_cols:dynamic, out_cols:dynamic, labels:dynamic=dynamic(null))
{
let kwargs = bag_pack('num_bins', num_bins, 'in_cols', in_cols, 'out_cols', out_cols, 'labels', labels);
let code = ```if 1:
from sklearn.preprocessing import KBinsDiscretizer
num_bins = kargs["num_bins"]
in_cols = kargs["in_cols"]
out_cols = kargs["out_cols"]
labels = kargs["labels"]
result = df
binner = KBinsDiscretizer(n_bins=num_bins, encode="ordinal", strategy="kmeans")
df_in = df[in_cols]
bdata = binner.fit_transform(df_in)
if labels is None:
for i in range(len(out_cols)): # loop on each column and convert it to binned labels
ii = np.round(binner.bin_edges_[i], 3)
labels = [str(ii[j-1]) + '-' + str(ii[j]) for j in range(1, num_bins+1)]
result.loc[:,out_cols[i]] = np.take(labels, bdata[:, i].astype(int))
else:
result[out_cols] = np.take(labels, bdata.astype(int))
```;
tbl
| evaluate python(typeof(*), code, kwargs)
};
// Write your query to use the function here.
Example
The following example uses the invoke operator to run the function.
To use a query-defined function, invoke it after the embedded function definition.
let quantize_fl=(tbl:(*), num_bins:int, in_cols:dynamic, out_cols:dynamic, labels:dynamic=dynamic(null))
{
let kwargs = bag_pack('num_bins', num_bins, 'in_cols', in_cols, 'out_cols', out_cols, 'labels', labels);
let code = ```if 1:
from sklearn.preprocessing import KBinsDiscretizer
num_bins = kargs["num_bins"]
in_cols = kargs["in_cols"]
out_cols = kargs["out_cols"]
labels = kargs["labels"]
result = df
binner = KBinsDiscretizer(n_bins=num_bins, encode="ordinal", strategy="kmeans")
df_in = df[in_cols]
bdata = binner.fit_transform(df_in)
if labels is None:
for i in range(len(out_cols)): # loop on each column and convert it to binned labels
ii = np.round(binner.bin_edges_[i], 3)
labels = [str(ii[j-1]) + '-' + str(ii[j]) for j in range(1, num_bins+1)]
result.loc[:,out_cols[i]] = np.take(labels, bdata[:, i].astype(int))
else:
result[out_cols] = np.take(labels, bdata.astype(int))
```;
tbl
| evaluate python(typeof(*), code, kwargs)
};
//
union
(range x from 1 to 5 step 1),
(range x from 10 to 15 step 1),
(range x from 20 to 25 step 1)
| extend x_label='', x_bin=''
| invoke quantize_fl(3, pack_array('x'), pack_array('x_label'), pack_array('Low', 'Med', 'High'))
| invoke quantize_fl(3, pack_array('x'), pack_array('x_bin'), dynamic(null))
Output
x | x_label | x_bin |
---|---|---|
1 | Low | 1.0-7.75 |
2 | Low | 1.0-7.75 |
3 | Low | 1.0-7.75 |
4 | Low | 1.0-7.75 |
5 | Low | 1.0-7.75 |
20 | High | 17.5-25.0 |
21 | High | 17.5-25.0 |
22 | High | 17.5-25.0 |
23 | High | 17.5-25.0 |
24 | High | 17.5-25.0 |
25 | High | 17.5-25.0 |
10 | Med | 7.75-17.5 |
11 | Med | 7.75-17.5 |
12 | Med | 7.75-17.5 |
13 | Med | 7.75-17.5 |
14 | Med | 7.75-17.5 |
15 | Med | 7.75-17.5 |