KernelExpansionCatalog.ApproximatedKernelMap 메서드
정의
중요
일부 정보는 릴리스되기 전에 상당 부분 수정될 수 있는 시험판 제품과 관련이 있습니다. Microsoft는 여기에 제공된 정보에 대해 어떠한 명시적이거나 묵시적인 보증도 하지 않습니다.
ApproximatedKernelMappingEstimator 내부 제품이 시프트 고정 커널 함수와 근사치인 낮은 차원 기능 공간에 입력 벡터를 매핑하는 항목을 만듭니다.
public static Microsoft.ML.Transforms.ApproximatedKernelMappingEstimator ApproximatedKernelMap (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, int rank = 1000, bool useCosAndSinBases = false, Microsoft.ML.Transforms.KernelBase generator = default, int? seed = default);
static member ApproximatedKernelMap : Microsoft.ML.TransformsCatalog * string * string * int * bool * Microsoft.ML.Transforms.KernelBase * Nullable<int> -> Microsoft.ML.Transforms.ApproximatedKernelMappingEstimator
<Extension()>
Public Function ApproximatedKernelMap (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional rank As Integer = 1000, Optional useCosAndSinBases As Boolean = false, Optional generator As KernelBase = Nothing, Optional seed As Nullable(Of Integer) = Nothing) As ApproximatedKernelMappingEstimator
매개 변수
- catalog
- TransformsCatalog
변환의 카탈로그입니다.
- inputColumnName
- String
변환할 열의 이름입니다. 이 값으로 null
설정하면 해당 값이 outputColumnName
원본으로 사용됩니다.
이 추정기는 데이터 형식의 알려진 크기 벡터 Single 에서 작동합니다.
- rank
- Int32
입력을 매핑할 기능 공간의 차원입니다.
- useCosAndSinBases
- Boolean
경우 true
cos 및 sin basis 함수를 모두 사용하여 임의의 푸리에 빈도마다 두 가지 기능을 만듭니다. 그렇지 않으면 cos 베이스만 사용됩니다. 설정 true
하면 출력 기능 공간의 차원이 2*rank
가 됩니다.
- generator
- KernelBase
사용할 커널을 나타내는 인수입니다. 사용 가능한 두 구현은 다음과 같습니다 GaussianKernelLaplacianKernel.
반환
예제
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
namespace Samples.Dynamic
{
public static class ApproximatedKernelMap
{
// Transform feature vector to another non-linear space. See
// https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[7] { 1, 1, 0, 0, 1, 0, 1} },
new DataPoint(){ Features = new float[7] { 0, 0, 1, 0, 0, 1, 1} },
new DataPoint(){ Features = new float[7] {-1, 1, 0,-1,-1, 0,-1} },
new DataPoint(){ Features = new float[7] { 0,-1, 0, 1, 0,-1,-1} }
};
// Convert training data to IDataView, the general data type used in
// ML.NET.
var data = mlContext.Data.LoadFromEnumerable(samples);
// ApproximatedKernel map takes data and maps it's to a random
// low -dimensional space.
var approximation = mlContext.Transforms.ApproximatedKernelMap(
"Features", rank: 4, generator: new GaussianKernel(gamma: 0.7f),
seed: 1);
// Now we can transform the data and look at the output to confirm the
// behavior of the estimator. This operation doesn't actually evaluate
// data until we read the data below.
var tansformer = approximation.Fit(data);
var transformedData = tansformer.Transform(data);
var column = transformedData.GetColumn<float[]>("Features").ToArray();
foreach (var row in column)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// -0.0119, 0.5867, 0.4942, 0.7041
// 0.4720, 0.5639, 0.4346, 0.2671
// -0.2243, 0.7071, 0.7053, -0.1681
// 0.0846, 0.5836, 0.6575, 0.0581
}
private class DataPoint
{
[VectorType(7)]
public float[] Features { get; set; }
}
}
}