다음을 통해 공유


StandardTrainersCatalog.SgdCalibrated 메서드

정의

오버로드

SgdCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, SgdCalibratedTrainer+Options)

선형 분류 모델을 사용하여 대상을 예측하는 고급 옵션을 사용하여 만듭니 SgdCalibratedTrainer 다. SGD(확률적 그라데이션 하강)는 서로 다른 목표 함수를 최적화하는 반복 알고리즘입니다.

SgdCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Double, Single)

선형 분류 모델을 사용하여 대상을 예측하는 만들기 SgdCalibratedTrainer SGD(확률적 그라데이션 하강)는 서로 다른 목표 함수를 최적화하는 반복 알고리즘입니다.

SgdCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, SgdCalibratedTrainer+Options)

선형 분류 모델을 사용하여 대상을 예측하는 고급 옵션을 사용하여 만듭니 SgdCalibratedTrainer 다. SGD(확률적 그라데이션 하강)는 서로 다른 목표 함수를 최적화하는 반복 알고리즘입니다.

public static Microsoft.ML.Trainers.SgdCalibratedTrainer SgdCalibrated (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Microsoft.ML.Trainers.SgdCalibratedTrainer.Options options);
static member SgdCalibrated : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * Microsoft.ML.Trainers.SgdCalibratedTrainer.Options -> Microsoft.ML.Trainers.SgdCalibratedTrainer
<Extension()>
Public Function SgdCalibrated (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, options As SgdCalibratedTrainer.Options) As SgdCalibratedTrainer

매개 변수

catalog
BinaryClassificationCatalog.BinaryClassificationTrainers

이진 분류 카탈로그 트레이너 개체입니다.

options
SgdCalibratedTrainer.Options

트레이너 옵션.

반환

예제

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
    public static class SgdCalibratedWithOptions
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define trainer options.
            var options = new SgdCalibratedTrainer.Options()
            {
                // Make the convergence tolerance tighter.
                ConvergenceTolerance = 5e-5,
                // Increase the maximum number of passes over training data.
                NumberOfIterations = 30,
                // Give the instances of the positive class slightly more weight.
                PositiveInstanceWeight = 1.2f,
            };

            // Define the trainer.
            var pipeline = mlContext.BinaryClassification.Trainers
                .SgdCalibrated(options);

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data
                .LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data
                .CreateEnumerable<Prediction>(transformedTestData,
                reuseRowObject: false).ToList();

            // Print 5 predictions.
            foreach (var p in predictions.Take(5))
                Console.WriteLine($"Label: {p.Label}, "
                    + $"Prediction: {p.PredictedLabel}");

            // Expected output:
            //   Label: True, Prediction: False
            //   Label: False, Prediction: False
            //   Label: True, Prediction: True
            //   Label: True, Prediction: True
            //   Label: False, Prediction: False

            // Evaluate the overall metrics.
            var metrics = mlContext.BinaryClassification
                .Evaluate(transformedTestData);

            PrintMetrics(metrics);

            // Expected output:
            //   Accuracy: 0.60
            //   AUC: 0.65
            //   F1 Score: 0.50
            //   Negative Precision: 0.59
            //   Negative Recall: 0.74
            //   Positive Precision: 0.61
            //   Positive Recall: 0.43
            //
            //   TEST POSITIVE RATIO:    0.4760 (238.0/(238.0+262.0))
            //   Confusion table
            //             ||======================
            //   PREDICTED || positive | negative | Recall
            //   TRUTH     ||======================
            //    positive ||      184 |       54 | 0.7731
            //    negative ||      156 |      106 | 0.4046
            //             ||======================
            //   Precision ||   0.5412 |   0.6625 |
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)

        {
            var random = new Random(seed);
            float randomFloat() => (float)random.NextDouble();
            for (int i = 0; i < count; i++)
            {
                var label = randomFloat() > 0.5f;
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    // For data points with false label, the feature values are
                    // slightly increased by adding a constant.
                    Features = Enumerable.Repeat(label, 50)
                        .Select(x => x ? randomFloat() : randomFloat() +
                        0.03f).ToArray()

                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public bool Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public bool Label { get; set; }
            // Predicted label from the trainer.
            public bool PredictedLabel { get; set; }
        }

        // Pretty-print BinaryClassificationMetrics objects.
        private static void PrintMetrics(BinaryClassificationMetrics metrics)
        {
            Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
            Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
            Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
            Console.WriteLine($"Negative Precision: " +
                $"{metrics.NegativePrecision:F2}");

            Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
            Console.WriteLine($"Positive Precision: " +
                $"{metrics.PositivePrecision:F2}");

            Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
            Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
        }
    }
}

적용 대상

SgdCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Double, Single)

선형 분류 모델을 사용하여 대상을 예측하는 만들기 SgdCalibratedTrainer SGD(확률적 그라데이션 하강)는 서로 다른 목표 함수를 최적화하는 반복 알고리즘입니다.

public static Microsoft.ML.Trainers.SgdCalibratedTrainer SgdCalibrated (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string exampleWeightColumnName = default, int numberOfIterations = 20, double learningRate = 0.01, float l2Regularization = 1E-06);
static member SgdCalibrated : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * string * string * string * int * double * single -> Microsoft.ML.Trainers.SgdCalibratedTrainer
<Extension()>
Public Function SgdCalibrated (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional numberOfIterations As Integer = 20, Optional learningRate As Double = 0.01, Optional l2Regularization As Single = 1E-06) As SgdCalibratedTrainer

매개 변수

catalog
BinaryClassificationCatalog.BinaryClassificationTrainers

이진 분류 카탈로그 트레이너 개체입니다.

labelColumnName
String

레이블 열 또는 종속 변수의 이름입니다. 열 데이터는 .이어야 Boolean합니다.

featureColumnName
String

기능 또는 독립 변수입니다. 열 데이터는 알려진 크기의 벡터 Single여야 합니다.

exampleWeightColumnName
String

예제 가중치 열의 이름(선택 사항)입니다.

numberOfIterations
Int32

학습 데이터 세트를 통과하는 최대 패스 수입니다. 온라인 학습을 시뮬레이션하려면 1로 설정합니다.

learningRate
Double

SGD에서 사용하는 초기 학습 속도입니다.

l2Regularization
Single

정규화를 위한 L2 가중치입니다.

반환

예제

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
    public static class SgdCalibrated
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define the trainer.
            var pipeline = mlContext.BinaryClassification.Trainers
                .SgdCalibrated();

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data
                .LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data
                .CreateEnumerable<Prediction>(transformedTestData,
                reuseRowObject: false).ToList();

            // Print 5 predictions.
            foreach (var p in predictions.Take(5))
                Console.WriteLine($"Label: {p.Label}, "
                    + $"Prediction: {p.PredictedLabel}");

            // Expected output:
            //   Label: True, Prediction: False
            //   Label: False, Prediction: False
            //   Label: True, Prediction: True
            //   Label: True, Prediction: True
            //   Label: False, Prediction: False

            // Evaluate the overall metrics.
            var metrics = mlContext.BinaryClassification
                .Evaluate(transformedTestData);

            PrintMetrics(metrics);

            // Expected output:
            //   Accuracy: 0.60
            //   AUC: 0.63
            //   F1 Score: 0.43
            //   Negative Precision: 0.58
            //   Negative Recall: 0.85
            //   Positive Precision: 0.66
            //   Positive Recall: 0.32
            //
            //   TEST POSITIVE RATIO:    0.4760 (238.0/(238.0+262.0))
            //   Confusion table
            //             ||======================
            //   PREDICTED || positive | negative | Recall
            //   TRUTH     ||======================
            //    positive ||       77 |      161 | 0.3235
            //    negative ||       43 |      219 | 0.8359
            //             ||======================
            //   Precision ||   0.6417 |   0.5763 |
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)

        {
            var random = new Random(seed);
            float randomFloat() => (float)random.NextDouble();
            for (int i = 0; i < count; i++)
            {
                var label = randomFloat() > 0.5f;
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    // For data points with false label, the feature values are
                    // slightly increased by adding a constant.
                    Features = Enumerable.Repeat(label, 50)
                        .Select(x => x ? randomFloat() : randomFloat() +
                        0.03f).ToArray()

                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public bool Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public bool Label { get; set; }
            // Predicted label from the trainer.
            public bool PredictedLabel { get; set; }
        }

        // Pretty-print BinaryClassificationMetrics objects.
        private static void PrintMetrics(BinaryClassificationMetrics metrics)
        {
            Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
            Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
            Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
            Console.WriteLine($"Negative Precision: " +
                $"{metrics.NegativePrecision:F2}");

            Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
            Console.WriteLine($"Positive Precision: " +
                $"{metrics.PositivePrecision:F2}");

            Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
            Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
        }
    }
}

적용 대상