TextCatalog.RemoveDefaultStopWords 메서드
정의
중요
일부 정보는 릴리스되기 전에 상당 부분 수정될 수 있는 시험판 제품과 관련이 있습니다. Microsoft는 여기에 제공된 정보에 대해 어떠한 명시적이거나 묵시적인 보증도 하지 않습니다.
CustomStopWordsRemovingEstimator에 지정된 inputColumnName
열의 데이터를 새 열로 복사하고 해당 열 outputColumnName
에서 특정 텍스트 집합 language
을 제거하는 를 만듭니다.
public static Microsoft.ML.Transforms.Text.StopWordsRemovingEstimator RemoveDefaultStopWords (this Microsoft.ML.TransformsCatalog.TextTransforms catalog, string outputColumnName, string inputColumnName = default, Microsoft.ML.Transforms.Text.StopWordsRemovingEstimator.Language language = Microsoft.ML.Transforms.Text.StopWordsRemovingEstimator+Language.English);
static member RemoveDefaultStopWords : Microsoft.ML.TransformsCatalog.TextTransforms * string * string * Microsoft.ML.Transforms.Text.StopWordsRemovingEstimator.Language -> Microsoft.ML.Transforms.Text.StopWordsRemovingEstimator
<Extension()>
Public Function RemoveDefaultStopWords (catalog As TransformsCatalog.TextTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional language As StopWordsRemovingEstimator.Language = Microsoft.ML.Transforms.Text.StopWordsRemovingEstimator+Language.English) As StopWordsRemovingEstimator
매개 변수
- catalog
- TransformsCatalog.TextTransforms
변환의 카탈로그입니다.
- outputColumnName
- String
의 변환에서 생성된 열의 inputColumnName
이름입니다.
이 열의 데이터 형식은 텍스트의 가변 크기 벡터입니다.
- inputColumnName
- String
데이터를 복사할 열의 이름입니다. 이 추정기는 텍스트의 벡터에서 작동합니다.
- language
- StopWordsRemovingEstimator.Language
입력 텍스트 열 inputColumnName
의 랑가우지입니다.
반환
예제
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Transforms.Text;
namespace Samples.Dynamic
{
public static class RemoveDefaultStopWords
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Create an empty list as the dataset. The 'RemoveDefaultStopWords'
// does not require training data as the estimator
// ('StopWordsRemovingEstimator') created by 'RemoveDefaultStopWords'
// API is not a trainable estimator. The empty list is only needed to
// pass input schema to the pipeline.
var emptySamples = new List<TextData>();
// Convert sample list to an empty IDataView.
var emptyDataView = mlContext.Data.LoadFromEnumerable(emptySamples);
// A pipeline for removing stop words from input text/string.
// The pipeline first tokenizes text into words then removes stop words.
// The 'RemoveDefaultStopWords' API ignores casing of the text/string
// e.g. 'tHe' and 'the' are considered the same stop words.
var textPipeline = mlContext.Transforms.Text.TokenizeIntoWords("Words",
"Text")
.Append(mlContext.Transforms.Text.RemoveDefaultStopWords(
"WordsWithoutStopWords", "Words", language:
StopWordsRemovingEstimator.Language.English));
// Fit to data.
var textTransformer = textPipeline.Fit(emptyDataView);
// Create the prediction engine to remove the stop words from the input
// text /string.
var predictionEngine = mlContext.Model.CreatePredictionEngine<TextData,
TransformedTextData>(textTransformer);
// Call the prediction API to remove stop words.
var data = new TextData()
{
Text = "ML.NET's RemoveDefaultStopWords " +
"API removes stop words from tHe text/string. It requires the " +
"text/string to be tokenized beforehand."
};
var prediction = predictionEngine.Predict(data);
// Print the length of the word vector after the stop words removed.
Console.WriteLine("Number of words: " + prediction.WordsWithoutStopWords
.Length);
// Print the word vector without stop words.
Console.WriteLine("\nWords without stop words: " + string.Join(",",
prediction.WordsWithoutStopWords));
// Expected output:
// Number of words: 11
// Words without stop words: ML.NET's,RemoveDefaultStopWords,API,removes,stop,words,text/string.,requires,text/string,tokenized,beforehand.
}
private class TextData
{
public string Text { get; set; }
}
private class TransformedTextData : TextData
{
public string[] WordsWithoutStopWords { get; set; }
}
}
}