FastTreeTweedieTrainer 클래스
정의
중요
일부 정보는 릴리스되기 전에 상당 부분 수정될 수 있는 시험판 제품과 관련이 있습니다. Microsoft는 여기에 제공된 정보에 대해 어떠한 명시적이거나 묵시적인 보증도 하지 않습니다.
IEstimator<TTransformer> 트위디 손실 함수를 사용하여 의사 결정 트리 회귀 모델을 학습하기 위한 것입니다. 이 트레이너는 포아송, 복합 포아송 및 감마 회귀의 일반화입니다.
public sealed class FastTreeTweedieTrainer : Microsoft.ML.Trainers.FastTree.BoostingFastTreeTrainerBase<Microsoft.ML.Trainers.FastTree.FastTreeTweedieTrainer.Options,Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.FastTree.FastTreeTweedieModelParameters>,Microsoft.ML.Trainers.FastTree.FastTreeTweedieModelParameters>
type FastTreeTweedieTrainer = class
inherit BoostingFastTreeTrainerBase<FastTreeTweedieTrainer.Options, RegressionPredictionTransformer<FastTreeTweedieModelParameters>, FastTreeTweedieModelParameters>
Public NotInheritable Class FastTreeTweedieTrainer
Inherits BoostingFastTreeTrainerBase(Of FastTreeTweedieTrainer.Options, RegressionPredictionTransformer(Of FastTreeTweedieModelParameters), FastTreeTweedieModelParameters)
- 상속
설명
이 트레이너를 만들려면 FastTreeTweedie 또는 FastTreeTweedie(옵션)를 사용합니다.
입력 및 출력 열
입력 레이블 열 데이터는 Single이어야 합니다. 입력 기능 열 데이터는 알려진 크기의 벡터 Single여야 합니다.
이 트레이너는 다음 열을 출력합니다.
출력 열 이름 | 열 유형 | 설명 |
---|---|---|
Score |
Single | 모델에서 예측한 바인딩되지 않은 점수입니다. |
트레이너 특성
기계 학습 작업 | 회귀 |
정규화가 필요한가요? | 아니요 |
캐싱이 필요한가요? | 아니요 |
Microsoft.ML 외에도 필요한 NuGet | Microsoft.ML.FastTree |
ONNX로 내보낼 수 있습니다. | 예 |
학습 알고리즘 세부 정보
트위디 부스팅 모델은 양, 콴, 주에서 그라데이션 Tree-Boosted 트위디 복합 포아송 모델을 통해 보험 프리미엄 예측에 설립 된 수학을 따릅니다. 그라데이션 부스팅에 대한 소개 및 자세한 내용은 위키백과: 그라데이션 부스팅(그라데이션 트리 부스팅) 또는 Greedy 함수 근사치: 그라데이션 부스팅 머신을 참조하세요.
사용 예제에 대한 링크는 참고 섹션을 참조하세요.
필드
FeatureColumn |
트레이너가 기대하는 기능 열입니다. (다음에서 상속됨 TrainerEstimatorBase<TTransformer,TModel>) |
GroupIdColumn |
순위 트레이너가 기대하는 선택적 groupID 열입니다. (다음에서 상속됨 TrainerEstimatorBaseWithGroupId<TTransformer,TModel>) |
LabelColumn |
트레이너가 기대하는 레이블 열입니다. Can be |
WeightColumn |
트레이너가 기대하는 체중 열입니다. 가중치가 학습에 사용되지 않음을 나타내는 일 |
속성
Info |
IEstimator<TTransformer> 트위디 손실 함수를 사용하여 의사 결정 트리 회귀 모델을 학습하기 위한 것입니다. 이 트레이너는 포아송, 복합 포아송 및 감마 회귀의 일반화입니다. (다음에서 상속됨 FastTreeTrainerBase<TOptions,TTransformer,TModel>) |
메서드
Fit(IDataView, IDataView) |
FastTreeTweedieTrainer 학습 데이터와 유효성 검사 데이터를 모두 사용하여 학습하고 , 을 반환합니다RegressionPredictionTransformer<TModel>. |
Fit(IDataView) |
를 학습하고 반환합니다 ITransformer. (다음에서 상속됨 TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
IEstimator<TTransformer> 트위디 손실 함수를 사용하여 의사 결정 트리 회귀 모델을 학습하기 위한 것입니다. 이 트레이너는 포아송, 복합 포아송 및 감마 회귀의 일반화입니다. (다음에서 상속됨 TrainerEstimatorBase<TTransformer,TModel>) |
확장 메서드
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
추정기 체인에 '캐싱 검사점'을 추가합니다. 이렇게 하면 다운스트림 추정기가 캐시된 데이터에 대해 학습됩니다. 여러 데이터 전달을 수행하는 트레이너 앞에 캐싱 검사점을 두는 것이 유용합니다. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
추정기가 지정된 경우 대리자를 호출한 후 Fit(IDataView) 호출되는 래핑 개체를 반환합니다. 예측 도구가 적합한 항목에 대한 정보를 반환하는 것이 중요한 경우가 많습니다. 따라서 Fit(IDataView) 메서드는 일반 ITransformer개체가 아닌 특별히 형식화된 개체를 반환합니다. 그러나 동시에 IEstimator<TTransformer> 개체가 많은 파이프라인으로 형성되는 경우가 많으므로 변압기를 가져올 추정기가 이 체인의 어딘가에 묻혀 있는 위치를 통해 EstimatorChain<TLastTransformer> 추정기 체인을 빌드해야 할 수도 있습니다. 이 시나리오에서는 fit이 호출되면 호출되는 대리자를 이 메서드를 통해 연결할 수 있습니다. |