다음을 통해 공유


OlsTrainer 클래스

정의

IEstimator<TTransformer> 선형 회귀 모델의 매개 변수를 예측하기 위해 OLS(일반 최소 제곱)를 사용하여 선형 회귀 모델을 학습하는 데 사용됩니다.

public sealed class OlsTrainer : Microsoft.ML.Trainers.TrainerEstimatorBase<Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.OlsModelParameters>,Microsoft.ML.Trainers.OlsModelParameters>
type OlsTrainer = class
    inherit TrainerEstimatorBase<RegressionPredictionTransformer<OlsModelParameters>, OlsModelParameters>
Public NotInheritable Class OlsTrainer
Inherits TrainerEstimatorBase(Of RegressionPredictionTransformer(Of OlsModelParameters), OlsModelParameters)
상속

설명

이 트레이너를 만들려면 Ols 또는 Ols(옵션)를 사용합니다.

입력 및 출력 열

입력 레이블 열 데이터는 Single이어야 합니다. 입력 기능 열 데이터는 알려진 크기의 벡터 Single여야 합니다.

이 트레이너는 다음 열을 출력합니다.

출력 열 이름 열 유형 설명
Score Single 모델에서 예측한 바인딩되지 않은 점수입니다.

트레이너 특성

기계 학습 작업 회귀
정규화가 필요한가요?
캐싱이 필요한가요? 아니요
Microsoft.ML 외에도 필요한 NuGet Microsoft.ML.Mkl.Components
ONNX로 내보낼 수 있습니다.

학습 알고리즘 세부 정보

OLS(일반 최소 제곱) 는 매개 변수가 있는 회귀 메서드입니다. 종속 변수의 조건부 평균이 종속 변수의 선형 함수를 따른다고 가정합니다. 관찰된 값과 예측 간의 차이의 제곱을 최소화하여 회귀 매개 변수를 추정할 수 있습니다.

사용 예제에 대한 링크는 참고 섹션을 확인하세요.

필드

FeatureColumn

트레이너가 기대하는 기능 열입니다.

(다음에서 상속됨 TrainerEstimatorBase<TTransformer,TModel>)
LabelColumn

트레이너가 기대하는 레이블 열입니다. null수 있습니다. 이는 레이블이 학습에 사용되지 않음을 나타냅니다.

(다음에서 상속됨 TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

트레이너가 기대하는 체중 열입니다. 가중치가 학습에 사용되지 않음을 나타내는 일 수 null있습니다.

(다음에서 상속됨 TrainerEstimatorBase<TTransformer,TModel>)

속성

Info

IEstimator<TTransformer> 선형 회귀 모델의 매개 변수를 예측하기 위해 OLS(일반 최소 제곱)를 사용하여 선형 회귀 모델을 학습하는 데 사용됩니다.

메서드

Fit(IDataView)

를 학습하고 반환합니다 ITransformer.

(다음에서 상속됨 TrainerEstimatorBase<TTransformer,TModel>)
GetOutputSchema(SchemaShape)

IEstimator<TTransformer> 선형 회귀 모델의 매개 변수를 예측하기 위해 OLS(일반 최소 제곱)를 사용하여 선형 회귀 모델을 학습하는 데 사용됩니다.

(다음에서 상속됨 TrainerEstimatorBase<TTransformer,TModel>)

확장 메서드

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

추정기 체인에 '캐싱 검사점'을 추가합니다. 이렇게 하면 다운스트림 추정기가 캐시된 데이터에 대해 학습됩니다. 여러 데이터 전달을 수행하는 트레이너 앞에 캐싱 검사점이 있는 것이 좋습니다.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

추정기가 지정된 경우 호출된 대리 Fit(IDataView) 자를 호출할 래핑 개체를 반환합니다. 예측 도구가 적합한 항목에 대한 정보를 반환하는 것이 중요한 경우가 많습니다. 따라서 Fit(IDataView) 메서드는 일반 ITransformer개체가 아닌 구체적으로 형식화된 개체를 반환합니다. 그러나 동시에 IEstimator<TTransformer> 개체가 많은 파이프라인으로 형성되는 경우가 많으므로 변환기를 가져올 추정기가 이 체인의 어딘가에 묻혀 있는 위치를 통해 EstimatorChain<TLastTransformer> 추정기 체인을 빌드해야 할 수 있습니다. 이 시나리오에서는 이 메서드를 통해 fit이 호출되면 호출될 대리자를 연결할 수 있습니다.

적용 대상

추가 정보