Thread.AllocateNamedDataSlot(String) Method
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Allocates a named data slot on all threads. For better performance, use fields that are marked with the ThreadStaticAttribute attribute instead.
public:
static LocalDataStoreSlot ^ AllocateNamedDataSlot(System::String ^ name);
public static LocalDataStoreSlot AllocateNamedDataSlot (string name);
static member AllocateNamedDataSlot : string -> LocalDataStoreSlot
Public Shared Function AllocateNamedDataSlot (name As String) As LocalDataStoreSlot
Parameters
- name
- String
The name of the data slot to be allocated.
Returns
The allocated named data slot on all threads.
Exceptions
A named data slot with the specified name already exists.
Examples
This section contains two code examples. The first example shows how to use a field that is marked with the ThreadStaticAttribute attribute to hold thread-specific information. The second example shows how to use a data slot to do the same thing.
First Example
The following example shows how to use a field that is marked with ThreadStaticAttribute to hold thread-specific information. This technique provides better performance than the technique that is shown in the second example.
using namespace System;
using namespace System::Threading;
ref class ThreadData
{
private:
[ThreadStatic]
static int threadSpecificData;
public:
static void ThreadStaticDemo()
{
// Store the managed thread id for each thread in the static
// variable.
threadSpecificData = Thread::CurrentThread->ManagedThreadId;
// Allow other threads time to execute the same code, to show
// that the static data is unique to each thread.
Thread::Sleep( 1000 );
// Display the static data.
Console::WriteLine( "Data for managed thread {0}: {1}",
Thread::CurrentThread->ManagedThreadId, threadSpecificData );
}
};
int main()
{
for ( int i = 0; i < 3; i++ )
{
Thread^ newThread =
gcnew Thread( gcnew ThreadStart( ThreadData::ThreadStaticDemo ));
newThread->Start();
}
}
/* This code example produces output similar to the following:
Data for managed thread 4: 4
Data for managed thread 5: 5
Data for managed thread 3: 3
*/
using System;
using System.Threading;
class Test
{
static void Main()
{
for(int i = 0; i < 3; i++)
{
Thread newThread = new Thread(ThreadData.ThreadStaticDemo);
newThread.Start();
}
}
}
class ThreadData
{
[ThreadStatic]
static int threadSpecificData;
public static void ThreadStaticDemo()
{
// Store the managed thread id for each thread in the static
// variable.
threadSpecificData = Thread.CurrentThread.ManagedThreadId;
// Allow other threads time to execute the same code, to show
// that the static data is unique to each thread.
Thread.Sleep( 1000 );
// Display the static data.
Console.WriteLine( "Data for managed thread {0}: {1}",
Thread.CurrentThread.ManagedThreadId, threadSpecificData );
}
}
/* This code example produces output similar to the following:
Data for managed thread 4: 4
Data for managed thread 5: 5
Data for managed thread 3: 3
*/
open System
open System.Threading
type ThreadData() =
// Create a static variable to hold the data for each thread.
[<ThreadStatic; DefaultValue>]
static val mutable private threadSpecificData : int
static member ThreadStaticDemo() =
// Store the managed thread id for each thread in the static
// variable.
ThreadData.threadSpecificData <- Thread.CurrentThread.ManagedThreadId
// Allow other threads time to execute the same code, to show
// that the static data is unique to each thread.
Thread.Sleep 1000
// Display the static data.
printfn $"Data for managed thread {Thread.CurrentThread.ManagedThreadId}: {ThreadData.threadSpecificData}"
for i = 0 to 2 do
let newThread = Thread ThreadData.ThreadStaticDemo
newThread.Start()
// This code example produces output similar to the following:
// Data for managed thread 4: 4
// Data for managed thread 5: 5
// Data for managed thread 3: 3
Imports System.Threading
Class Test
<MTAThread> _
Shared Sub Main()
For i As Integer = 1 To 3
Dim newThread As New Thread(AddressOf ThreadData.ThreadStaticDemo)
newThread.Start()
Next i
End Sub
End Class
Class ThreadData
<ThreadStatic> _
Shared threadSpecificData As Integer
Shared Sub ThreadStaticDemo()
' Store the managed thread id for each thread in the static
' variable.
threadSpecificData = Thread.CurrentThread.ManagedThreadId
' Allow other threads time to execute the same code, to show
' that the static data is unique to each thread.
Thread.Sleep( 1000 )
' Display the static data.
Console.WriteLine( "Data for managed thread {0}: {1}", _
Thread.CurrentThread.ManagedThreadId, threadSpecificData )
End Sub
End Class
' This code example produces output similar to the following:
'
'Data for managed thread 4: 4
'Data for managed thread 5: 5
'Data for managed thread 3: 3
Second Example
The following example demonstrates how to use a named data slot to store thread-specific information.
Note
The example code does not use the AllocateNamedDataSlot method, because the GetNamedDataSlot method allocates the slot if it has not already been allocated. If the AllocateNamedDataSlot method is used, it should be called in the main thread at program startup.
using namespace System;
using namespace System::Threading;
ref class Slot
{
private:
static Random^ randomGenerator = gcnew Random();
public:
static void SlotTest()
{
// Set random data in each thread's data slot.
int slotData = randomGenerator->Next(1, 200);
int threadId = Thread::CurrentThread->ManagedThreadId;
Thread::SetData(
Thread::GetNamedDataSlot("Random"),
slotData);
// Show what was saved in the thread's data slot.
Console::WriteLine("Data stored in thread_{0}'s data slot: {1,3}",
threadId, slotData);
// Allow other threads time to execute SetData to show
// that a thread's data slot is unique to itself.
Thread::Sleep(1000);
int newSlotData =
(int)Thread::GetData(Thread::GetNamedDataSlot("Random"));
if (newSlotData == slotData)
{
Console::WriteLine("Data in thread_{0}'s data slot is still: {1,3}",
threadId, newSlotData);
}
else
{
Console::WriteLine("Data in thread_{0}'s data slot changed to: {1,3}",
threadId, newSlotData);
}
}
};
ref class Test
{
public:
static void Main()
{
array<Thread^>^ newThreads = gcnew array<Thread^>(4);
int i;
for (i = 0; i < newThreads->Length; i++)
{
newThreads[i] =
gcnew Thread(gcnew ThreadStart(&Slot::SlotTest));
newThreads[i]->Start();
}
Thread::Sleep(2000);
for (i = 0; i < newThreads->Length; i++)
{
newThreads[i]->Join();
Console::WriteLine("Thread_{0} finished.",
newThreads[i]->ManagedThreadId);
}
}
};
int main()
{
Test::Main();
}
using System;
using System.Threading;
class Test
{
public static void Main()
{
Thread[] newThreads = new Thread[4];
int i;
for (i = 0; i < newThreads.Length; i++)
{
newThreads[i] =
new Thread(new ThreadStart(Slot.SlotTest));
newThreads[i].Start();
}
Thread.Sleep(2000);
for (i = 0; i < newThreads.Length; i++)
{
newThreads[i].Join();
Console.WriteLine("Thread_{0} finished.",
newThreads[i].ManagedThreadId);
}
}
}
class Slot
{
private static Random randomGenerator = new Random();
public static void SlotTest()
{
// Set random data in each thread's data slot.
int slotData = randomGenerator.Next(1, 200);
int threadId = Thread.CurrentThread.ManagedThreadId;
Thread.SetData(
Thread.GetNamedDataSlot("Random"),
slotData);
// Show what was saved in the thread's data slot.
Console.WriteLine("Data stored in thread_{0}'s data slot: {1,3}",
threadId, slotData);
// Allow other threads time to execute SetData to show
// that a thread's data slot is unique to itself.
Thread.Sleep(1000);
int newSlotData =
(int)Thread.GetData(Thread.GetNamedDataSlot("Random"));
if (newSlotData == slotData)
{
Console.WriteLine("Data in thread_{0}'s data slot is still: {1,3}",
threadId, newSlotData);
}
else
{
Console.WriteLine("Data in thread_{0}'s data slot changed to: {1,3}",
threadId, newSlotData);
}
}
}
open System
open System.Threading
module Slot =
let private randomGenerator = Random()
let slotTest () =
// Set random data in each thread's data slot.
let slotData = randomGenerator.Next(1, 200)
let threadId = Thread.CurrentThread.ManagedThreadId
Thread.SetData(Thread.GetNamedDataSlot "Random", slotData)
// Show what was saved in the thread's data slot.
printfn $"Data stored in thread_{threadId}'s data slot: {slotData, 3}"
// Allow other threads time to execute SetData to show
// that a thread's data slot is unique to itself.
Thread.Sleep 1000
let newSlotData = Thread.GetData(Thread.GetNamedDataSlot "Random") :?> int
if newSlotData = slotData then
printfn $"Data in thread_{threadId}'s data slot is still: {newSlotData, 3}"
else
printfn $"Data in thread_{threadId}'s data slot changed to: {newSlotData, 3}"
let newThreads =
[| for _ = 0 to 3 do
let thread = Thread Slot.slotTest
thread.Start()
thread |]
Thread.Sleep 2000
for tread in newThreads do
tread.Join()
printfn $"Thread_{tread.ManagedThreadId} finished."
Imports System.Threading
Class Test
Public Shared Sub Main()
Dim newThreads(3) As Thread
Dim i As Integer
For i = 0 To newThreads.Length - 1
newThreads(i) = _
New Thread(New ThreadStart(AddressOf Slot.SlotTest))
newThreads(i).Start()
Next i
Thread.Sleep(2000)
For i = 0 To newThreads.Length - 1
newThreads(i).Join()
Console.WriteLine("Thread_{0} finished.", _
newThreads(i).ManagedThreadId)
Next i
End Sub
End Class
Class Slot
Private Shared randomGenerator As New Random()
Public Shared Sub SlotTest()
' Set random data in each thread's data slot.
Dim slotData As Integer = randomGenerator.Next(1, 200)
Dim threadId As Integer = Thread.CurrentThread.ManagedThreadId
Thread.SetData(
Thread.GetNamedDataSlot("Random"),
slotData)
' Show what was saved in the thread's data slot.
Console.WriteLine("Data stored in thread_{0}'s data slot: {1,3}",
threadId, slotData)
' Allow other threads time to execute SetData to show
' that a thread's data slot is unique to itself.
Thread.Sleep(1000)
Dim newSlotData As Integer = _
CType(Thread.GetData(Thread.GetNamedDataSlot("Random")), Integer)
If newSlotData = slotData Then
Console.WriteLine("Data in thread_{0}'s data slot is still: {1,3}",
threadId, newSlotData)
Else
Console.WriteLine("Data in thread_{0}'s data slot changed to: {1,3}",
threadId, newSlotData)
End If
End Sub
End Class
Remarks
Important
.NET Framework provides two mechanisms for using thread local storage (TLS): thread-relative static fields (that is, fields that are marked with the ThreadStaticAttribute attribute) and data slots. Thread-relative static fields provide much better performance than data slots, and enable compile-time type checking. For more information about using TLS, see Thread Local Storage: Thread-Relative Static Fields and Data Slots.
Threads use a local store memory mechanism to store thread-specific data. The common language runtime allocates a multi-slot data store array to each process when it is created. The thread can allocate a data slot in the data store, store and retrieve a data value in the slot, and free the slot for reuse after the thread expires. Data slots are unique per thread. No other thread (not even a child thread) can get that data.
It is not necessary to use the AllocateNamedDataSlot method to allocate a named data slot, because the GetNamedDataSlot method allocates the slot if it has not already been allocated.
Note
If the AllocateNamedDataSlot method is used, it should be called in the main thread at program startup, because it throws an exception if a slot with the specified name has already been allocated. There is no way to test whether a slot has already been allocated.
Slots allocated with this method must be freed with FreeNamedDataSlot.
Applies to
See also
.NET