BigInteger.ModPow Method
Microsoft Silverlight will reach end of support after October 2021. Learn more.
Performs modulus division on a number raised to the power of another number.
Namespace: System.Numerics
Assembly: System.Numerics (in System.Numerics.dll)
Syntax
'Declaration
Public Shared Function ModPow ( _
value As BigInteger, _
exponent As BigInteger, _
modulus As BigInteger _
) As BigInteger
public static BigInteger ModPow(
BigInteger value,
BigInteger exponent,
BigInteger modulus
)
Parameters
- value
Type: System.Numerics.BigInteger
The number to raise to the exponent power.
- exponent
Type: System.Numerics.BigInteger
The exponent to raise value by.
- modulus
Type: System.Numerics.BigInteger
The number by which to divide value raised to the exponent power.
Return Value
Type: System.Numerics.BigInteger
The remainder after dividing valueexponent by modulus.
Exceptions
Exception | Condition |
---|---|
DivideByZeroException | modulus is zero. |
ArgumentOutOfRangeException | exponent is negative. |
Remarks
The ModPow method evaluates the following expression:
(baseValue ^ exponent) Mod modulus
To perform exponentiation on BigInteger values without modulus division, use the Pow method.
Examples
The following example provides a simple illustration of calling the ModPow method.
Imports System.Numerics
Module Example
Public Sub Demo(ByVal outputBlock As System.Windows.Controls.TextBlock)
Dim number As BigInteger = 10
Dim exponent As Integer = 3
Dim modulus As BigInteger = 30
outputBlock.Text += String.Format("({0}^{1}) Mod {2} = {3}", _
number, exponent, modulus, _
BigInteger.ModPow(number, exponent, modulus)) + vbCrLf
End Sub
End Module
' The example displays the following output:
' (10^3) Mod 30 = 10
using System;
using System.Numerics;
public class Example
{
public static void Demo(System.Windows.Controls.TextBlock outputBlock)
{
BigInteger number = 10;
int exponent = 3;
BigInteger modulus = 30;
outputBlock.Text += String.Format("({0}^{1}) Mod {2} = {3}",
number, exponent, modulus,
BigInteger.ModPow(number, exponent, modulus)) + "\n";
}
}
// The example displays the following output:
// (10^3) Mod 30 = 10
Version Information
Silverlight
Supported in: 5, 4
Platforms
For a list of the operating systems and browsers that are supported by Silverlight, see Supported Operating Systems and Browsers.