Nota
L-aċċess għal din il-paġna jeħtieġ l-awtorizzazzjoni. Tista’ tipprova tidħol jew tibdel id-direttorji.
L-aċċess għal din il-paġna jeħtieġ l-awtorizzazzjoni. Tista’ tipprova tibdel id-direttorji.
The following table shows non-intrinsic math functions that can be derived from the intrinsic math functions of the System.Math object. You can access the intrinsic math functions by adding Imports System.Math to your file or project.
| Function | Derived equivalents |
|---|---|
| Secant (Sec(x)) | 1 / Cos(x) |
| Cosecant (Csc(x)) | 1 / Sin(x) |
| Cotangent (Ctan(x)) | 1 / Tan(x) |
| Inverse sine (Asin(x)) | Atan(x / Sqrt(-x * x + 1)) |
| Inverse cosine (Acos(x)) | Atan(-x / Sqrt(-x * x + 1)) + 2 * Atan(1) |
| Inverse secant (Asec(x)) | 2 * Atan(1) – Atan(Sign(x) / Sqrt(x * x – 1)) |
| Inverse cosecant (Acsc(x)) | Atan(Sign(x) / Sqrt(x * x – 1)) |
| Inverse cotangent (Acot(x)) | 2 * Atan(1) - Atan(x) |
| Hyperbolic sine (Sinh(x)) | (Exp(x) – Exp(-x)) / 2 |
| Hyperbolic cosine (Cosh(x)) | (Exp(x) + Exp(-x)) / 2 |
| Hyperbolic tangent (Tanh(x)) | (Exp(x) – Exp(-x)) / (Exp(x) + Exp(-x)) |
| Hyperbolic secant (Sech(x)) | 2 / (Exp(x) + Exp(-x)) |
| Hyperbolic cosecant (Csch(x)) | 2 / (Exp(x) – Exp(-x)) |
| Hyperbolic cotangent (Coth(x)) | (Exp(x) + Exp(-x)) / (Exp(x) – Exp(-x)) |
| Inverse hyperbolic sine (Asinh(x)) | Log(x + Sqrt(x * x + 1)) |
| Inverse hyperbolic cosine (Acosh(x)) | Log(x + Sqrt(x * x – 1)) |
| Inverse hyperbolic tangent (Atanh(x)) | Log((1 + x) / (1 – x)) / 2 |
| Inverse hyperbolic secant (AsecH(x)) | Log((Sqrt(-x * x + 1) + 1) / x) |
| Inverse hyperbolic cosecant (Acsch(x)) | Log((Sign(x) * Sqrt(x * x + 1) + 1) / x) |
| Inverse hyperbolic cotangent (Acoth(x)) | Log((x + 1) / (x – 1)) / 2 |
See also
Ikkollabora magħna fuq GitHub
Is-sors għal dan il-kontenut jista’ jinstab fuq GitHub, fejn tista’ wkoll toħloq u tirrevedi l-problemi u t-talbiet għall-immerġjar. Għal aktar informazzjoni, ara l-gwida għall-kontributuri tagħna.