Manage Databricks workspaces using Terraform
This article shows how to manage resources in an Azure Databricks workspace using the Databricks Terraform provider.
The following configuration blocks initialize the most common variables, databricks_spark_version, databricks_node_type, and databricks_current_user.
terraform {
required_providers {
databricks = {
source = "databricks/databricks"
}
}
}
provider "databricks" {}
data "databricks_current_user" "me" {}
data "databricks_spark_version" "latest" {}
data "databricks_node_type" "smallest" {
local_disk = true
}
Standard functionality
These resources do not require administrative privileges. More documentation is available at the dedicated pages databricks_secret_scope, databricks_token, databricks_secret, databricks_notebook, databricks_job, databricks_cluster, databricks_cluster_policy, databricks_instance_pool.
resource "databricks_secret_scope" "this" {
name = "demo-${data.databricks_current_user.me.alphanumeric}"
}
resource "databricks_token" "pat" {
comment = "Created from ${abspath(path.module)}"
lifetime_seconds = 3600
}
resource "databricks_secret" "token" {
string_value = databricks_token.pat.token_value
scope = databricks_secret_scope.this.name
key = "token"
}
resource "databricks_notebook" "this" {
path = "${data.databricks_current_user.me.home}/Terraform"
language = "PYTHON"
content_base64 = base64encode(<<-EOT
token = dbutils.secrets.get('${databricks_secret_scope.this.name}', '${databricks_secret.token.key}')
print(f'This should be redacted: {token}')
EOT
)
}
resource "databricks_job" "this" {
name = "Terraform Demo (${data.databricks_current_user.me.alphanumeric})"
task {
task_key = "demo_task"
new_cluster {
num_workers = 1
spark_version = data.databricks_spark_version.latest.id
node_type_id = data.databricks_node_type.smallest.id
}
notebook_task {
notebook_path = databricks_notebook.this.path
}
}
email_notifications {}
}
resource "databricks_cluster" "this" {
cluster_name = "Exploration (${data.databricks_current_user.me.alphanumeric})"
spark_version = data.databricks_spark_version.latest.id
instance_pool_id = databricks_instance_pool.smallest_nodes.id
autotermination_minutes = 20
autoscale {
min_workers = 1
max_workers = 10
}
}
resource "databricks_cluster_policy" "this" {
name = "Minimal (${data.databricks_current_user.me.alphanumeric})"
definition = jsonencode({
"dbus_per_hour" : {
"type" : "range",
"maxValue" : 10
},
"autotermination_minutes" : {
"type" : "fixed",
"value" : 20,
"hidden" : true
}
})
}
resource "databricks_instance_pool" "smallest_nodes" {
instance_pool_name = "Smallest Nodes (${data.databricks_current_user.me.alphanumeric})"
min_idle_instances = 0
max_capacity = 30
node_type_id = data.databricks_node_type.smallest.id
preloaded_spark_versions = [
data.databricks_spark_version.latest.id
]
idle_instance_autotermination_minutes = 20
}
output "notebook_url" {
value = databricks_notebook.this.url
}
output "job_url" {
value = databricks_job.this.url
}
Workspace security
Managing security requires administrative privileges. More documentation is available at the dedicated pages databricks_secret_acl, databricks_group, databricks_user, databricks_group_member, databricks_permissions.
resource "databricks_secret_acl" "spectators" {
principal = databricks_group.spectators.display_name
scope = databricks_secret_scope.this.name
permission = "READ"
}
resource "databricks_group" "spectators" {
display_name = "Spectators (by ${data.databricks_current_user.me.alphanumeric})"
}
resource "databricks_user" "dummy" {
user_name = "dummy+${data.databricks_current_user.me.alphanumeric}@example.com"
display_name = "Dummy ${data.databricks_current_user.me.alphanumeric}"
}
resource "databricks_group_member" "a" {
group_id = databricks_group.spectators.id
member_id = databricks_user.dummy.id
}
resource "databricks_permissions" "notebook" {
notebook_path = databricks_notebook.this.id
access_control {
user_name = databricks_user.dummy.user_name
permission_level = "CAN_RUN"
}
access_control {
group_name = databricks_group.spectators.display_name
permission_level = "CAN_READ"
}
}
resource "databricks_permissions" "job" {
job_id = databricks_job.this.id
access_control {
user_name = databricks_user.dummy.user_name
permission_level = "IS_OWNER"
}
access_control {
group_name = databricks_group.spectators.display_name
permission_level = "CAN_MANAGE_RUN"
}
}
resource "databricks_permissions" "cluster" {
cluster_id = databricks_cluster.this.id
access_control {
user_name = databricks_user.dummy.user_name
permission_level = "CAN_RESTART"
}
access_control {
group_name = databricks_group.spectators.display_name
permission_level = "CAN_ATTACH_TO"
}
}
resource "databricks_permissions" "policy" {
cluster_policy_id = databricks_cluster_policy.this.id
access_control {
group_name = databricks_group.spectators.display_name
permission_level = "CAN_USE"
}
}
resource "databricks_permissions" "pool" {
instance_pool_id = databricks_instance_pool.smallest_nodes.id
access_control {
group_name = databricks_group.spectators.display_name
permission_level = "CAN_ATTACH_TO"
}
}
Storage
Depending on your preferences and needs, you can
- Manage JAR, Wheel, and Egg libraries through the databricks_dbfs_file resource.
- List entries on DBFS with the databricks_dbfs_file_paths data source.
- Get contents of small files with the databricks_dbfs_file data source.
- Mount your Azure storage using the databricks_azure_adls_gen1_mount, databricks_azure_adls_gen2_mount, and databricks_azure_blob_mount resources.
Advanced configuration
More documentation is available at the dedicated pages for the databricks_workspace_conf and databricks_ip_access_list resources.
data "http" "my" {
url = "https://ifconfig.me"
}
resource "databricks_workspace_conf" "this" {
custom_config = {
"enableIpAccessLists": "true"
}
}
resource "databricks_ip_access_list" "only_me" {
label = "only ${data.http.my.body} is allowed to access workspace"
list_type = "ALLOW"
ip_addresses = ["${data.http.my.body}/32"]
depends_on = [databricks_workspace_conf.this]
}