Tutorial: Analyze data with glm
Learn how to perform linear and logistic regression using a generalized linear model (GLM) in Azure Databricks. glm
fits a Generalized Linear Model, similar to R’s glm()
.
Syntax: glm(formula, data, family...)
Parameters:
formula
: Symbolic description of model to be fitted, for eg:ResponseVariable ~ Predictor1 + Predictor2
. Supported operators:~
,+
,-
, and.
data
: Any SparkDataFramefamily
: String,"gaussian"
for linear regression or"binomial"
for logistic regressionlambda
: Numeric, Regularization parameteralpha
: Numeric, Elastic-net mixing parameter
Output: MLlib PipelineModel
This tutorial shows how to perform linear and logistic regression on the diamonds dataset.
Load diamonds data and split into training and test sets
require(SparkR)
# Read diamonds.csv dataset as SparkDataFrame
diamonds <- read.df("/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv",
source = "com.databricks.spark.csv", header="true", inferSchema = "true")
diamonds <- withColumnRenamed(diamonds, "", "rowID")
# Split data into Training set and Test set
trainingData <- sample(diamonds, FALSE, 0.7)
testData <- except(diamonds, trainingData)
# Exclude rowIDs
trainingData <- trainingData[, -1]
testData <- testData[, -1]
print(count(diamonds))
print(count(trainingData))
print(count(testData))
head(trainingData)
Train a linear regression model using glm()
This section shows how to predict a diamond’s price from its features by training a linear regression model using the training data.
There is a mix of categorical features (cut - Ideal, Premium, Very Good…) and continuous features (depth, carat). SparkR automatically encodes these features so you don’t have to encode these features manually.
# Family = "gaussian" to train a linear regression model
lrModel <- glm(price ~ ., data = trainingData, family = "gaussian")
# Print a summary of the trained model
summary(lrModel)
Use predict()
on the test data to see how well the model works on new data.
Syntax: predict(model, newData)
Parameters:
model
: MLlib modelnewData
: SparkDataFrame, typically your test set
Output: SparkDataFrame
# Generate predictions using the trained model
predictions <- predict(lrModel, newData = testData)
# View predictions against mpg column
display(select(predictions, "price", "prediction"))
Evaluate the model.
errors <- select(predictions, predictions$price, predictions$prediction, alias(predictions$price - predictions$prediction, "error"))
display(errors)
# Calculate RMSE
head(select(errors, alias(sqrt(sum(errors$error^2 , na.rm = TRUE) / nrow(errors)), "RMSE")))
Train a logistic regression model using glm()
This section shows how to create a logistic regression on the same dataset to predict a diamond’s cut based on some of its features.
Logistic regression in MLlib supports binary classification. To test the algorithm in this example, subset the data to work with two labels.
# Subset data to include rows where diamond cut = "Premium" or diamond cut = "Very Good"
trainingDataSub <- subset(trainingData, trainingData$cut %in% c("Premium", "Very Good"))
testDataSub <- subset(testData, testData$cut %in% c("Premium", "Very Good"))
# Family = "binomial" to train a logistic regression model
logrModel <- glm(cut ~ price + color + clarity + depth, data = trainingDataSub, family = "binomial")
# Print summary of the trained model
summary(logrModel)
# Generate predictions using the trained model
predictionsLogR <- predict(logrModel, newData = testDataSub)
# View predictions against label column
display(select(predictionsLogR, "label", "prediction"))
Evaluate the model.
errorsLogR <- select(predictionsLogR, predictionsLogR$label, predictionsLogR$prediction, alias(abs(predictionsLogR$label - predictionsLogR$prediction), "error"))
display(errorsLogR)