Managed online endpoints SKU list
The following table shows the virtual machine (VM) stock keeping units (SKUs) that are supported for Azure Machine Learning managed online endpoints. Each SKU is a unique alphanumeric code assigned to a particular VM that can be purchased.
The full SKU names listed in the table can be used for Azure CLI or Azure Resource Manager templates (ARM templates) requests to create and update deployments.
For more information on configuration details such as CPU and RAM, see Azure Machine Learning Pricing and VM sizes.
Family Name | VM Size Name | Supports Infiniband | Architecture | numberOfGPUs | numberOfCores | Skip 20% Reservation |
---|---|---|---|---|---|---|
standardDASv4Family | STANDARD_D2AS_V4 | - | Cpu | 0 | 2 | - |
standardDASv4Family | STANDARD_D4AS_V4 | - | Cpu | 0 | 4 | - |
standardDASv4Family | STANDARD_D8AS_V4 | - | Cpu | 0 | 8 | - |
standardDASv4Family | STANDARD_D16AS_V4 | - | Cpu | 0 | 16 | - |
standardDASv4Family | STANDARD_D32AS_V4 | - | Cpu | 0 | 32 | - |
standardDASv4Family | STANDARD_D48AS_V4 | - | Cpu | 0 | 48 | - |
standardDASv4Family | STANDARD_D64AS_V4 | - | Cpu | 0 | 64 | - |
standardDASv4Family | STANDARD_D96AS_V4 | - | Cpu | 0 | 96 | - |
standardDAv4Family | STANDARD_D2A_V4 | - | Cpu | 0 | 2 | - |
standardDAv4Family | STANDARD_D4A_V4 | - | Cpu | 0 | 4 | - |
standardDAv4Family | STANDARD_D8A_V4 | - | Cpu | 0 | 8 | - |
standardDAv4Family | STANDARD_D16A_V4 | - | Cpu | 0 | 16 | - |
standardDAv4Family | STANDARD_D32A_V4 | - | Cpu | 0 | 32 | - |
standardDAv4Family | STANDARD_D48A_V4 | - | Cpu | 0 | 48 | - |
standardDAv4Family | STANDARD_D64A_V4 | - | Cpu | 0 | 64 | - |
standardDAv4Family | STANDARD_D96A_V4 | - | Cpu | 0 | 96 | - |
standardDSv2Family | STANDARD_DS1_V2 | - | Cpu | 0 | 1 | - |
standardDSv2Family | STANDARD_DS2_V2 | - | Cpu | 0 | 2 | - |
standardDSv2Family | STANDARD_DS3_V2 | - | Cpu | 0 | 4 | - |
standardDSv2Family | STANDARD_DS4_V2 | - | Cpu | 0 | 8 | - |
standardDSv2Family | STANDARD_DS5_V2 | - | Cpu | 0 | 16 | - |
standardESv3Family | STANDARD_E2S_V3 | - | Cpu | 0 | 2 | - |
standardESv3Family | STANDARD_E4S_V3 | - | Cpu | 0 | 4 | - |
standardESv3Family | STANDARD_E8S_V3 | - | Cpu | 0 | 8 | - |
standardESv3Family | STANDARD_E16S_V3 | - | Cpu | 0 | 16 | - |
standardESv3Family | STANDARD_E32S_V3 | - | Cpu | 0 | 32 | - |
standardESv3Family | STANDARD_E48S_V3 | - | Cpu | 0 | 48 | - |
standardESv3Family | STANDARD_E64S_V3 | - | Cpu | 0 | 64 | - |
standardFSv2Family | STANDARD_F2S_V2 | - | Cpu | 0 | 2 | - |
standardFSv2Family | STANDARD_F4S_V2 | - | Cpu | 0 | 4 | - |
standardFSv2Family | STANDARD_F8S_V2 | - | Cpu | 0 | 8 | - |
standardFSv2Family | STANDARD_F16S_V2 | - | Cpu | 0 | 16 | - |
standardFSv2Family | STANDARD_F32S_V2 | - | Cpu | 0 | 32 | - |
standardFSv2Family | STANDARD_F48S_V2 | - | Cpu | 0 | 48 | - |
standardFSv2Family | STANDARD_F64S_V2 | - | Cpu | 0 | 64 | - |
standardFSv2Family | STANDARD_F72S_V2 | - | Cpu | 0 | 72 | - |
standardFXMDVSFamily | STANDARD_FX4MDS | - | Cpu | 0 | 4 | - |
standardFXMDVSFamily | STANDARD_FX12MDS | - | Cpu | 0 | 12 | - |
standardFXMDVSFamily | STANDARD_FX24MDS | - | Cpu | 0 | 24 | - |
standardFXMDVSFamily | STANDARD_FX36MDS | - | Cpu | 0 | 36 | - |
standardFXMDVSFamily | STANDARD_FX48MDS | - | Cpu | 0 | 48 | - |
standardLASv3Family | STANDARD_L8AS_V3 | - | Cpu | 0 | 8 | - |
standardLASv3Family | STANDARD_L16AS_V3 | - | Cpu | 0 | 16 | - |
standardLASv3Family | STANDARD_L32AS_V3 | - | Cpu | 0 | 32 | - |
standardLASv3Family | STANDARD_L48AS_V3 | - | Cpu | 0 | 48 | - |
standardLASv3Family | STANDARD_L64AS_V3 | - | Cpu | 0 | 64 | - |
standardLASv3Family | STANDARD_L80AS_V3 | - | Cpu | 0 | 80 | - |
standardLSv2Family | STANDARD_L8S_V2 | - | Cpu | 0 | 8 | - |
standardLSv2Family | STANDARD_L16S_V2 | - | Cpu | 0 | 16 | - |
standardLSv2Family | STANDARD_L32S_V2 | - | Cpu | 0 | 32 | - |
standardLSv2Family | STANDARD_L48S_V2 | - | Cpu | 0 | 48 | - |
standardLSv2Family | STANDARD_L64S_V2 | - | Cpu | 0 | 64 | - |
standardLSv2Family | STANDARD_L80S_V2 | - | Cpu | 0 | 80 | - |
standardLSv3Family | STANDARD_L8S_V3 | - | Cpu | 0 | 8 | - |
standardLSv3Family | STANDARD_L16S_V3 | - | Cpu | 0 | 16 | - |
standardLSv3Family | STANDARD_L32S_V3 | - | Cpu | 0 | 32 | - |
standardLSv3Family | STANDARD_L48S_V3 | - | Cpu | 0 | 48 | - |
standardLSv3Family | STANDARD_L64S_V3 | - | Cpu | 0 | 64 | - |
standardLSv3Family | STANDARD_L80S_V3 | - | Cpu | 0 | 80 | - |
standardNCADSA100v4Family | STANDARD_NC24ADS_A100_V4 | - | NvidiaGpu | 1 | 24 | Yes |
standardNCADSA100v4Family | STANDARD_NC48ADS_A100_V4 | - | NvidiaGpu | 2 | 48 | Yes |
standardNCADSA100v4Family | STANDARD_NC96ADS_A100_V4 | - | NvidiaGpu | 4 | 96 | Yes |
Standard NCASv3_T4 Family | STANDARD_NC4AS_T4_V3 | - | NvidiaGpu | 1 | 4 | - |
Standard NCASv3_T4 Family | STANDARD_NC8AS_T4_V3 | - | NvidiaGpu | 1 | 8 | - |
Standard NCASv3_T4 Family | STANDARD_NC16AS_T4_V3 | - | NvidiaGpu | 1 | 16 | - |
Standard NCASv3_T4 Family | STANDARD_NC64AS_T4_V3 | - | NvidiaGpu | 4 | 64 | - |
standardNCSv2Family | STANDARD_NC6S_V2 | - | NvidiaGpu | 1 | 6 | - |
standardNCSv2Family | STANDARD_NC12S_V2 | - | NvidiaGpu | 2 | 12 | - |
standardNCSv2Family | STANDARD_NC24S_V2 | - | NvidiaGpu | 4 | 24 | - |
standardNCSv3Family | STANDARD_NC6S_V3 | - | NvidiaGpu | 1 | 6 | - |
standardNCSv3Family | STANDARD_NC12S_V3 | - | NvidiaGpu | 2 | 12 | - |
standardNCSv3Family | STANDARD_NC24S_V3 | - | NvidiaGpu | 4 | 24 | - |
standardNCADSH100v5Family | STANDARD_NC40ADS_H100_V5 | - | NvidiaGpu | 1 | 40 | Yes |
standardNCADSH100v5Family | STANDARD_NC80ADIS_H100_V5 | - | NvidiaGpu | 2 | 80 | Yes |
standard NDAMSv4_A100Family | STANDARD_ND96AMSR_A100_V4 | Yes | NvidiaGpu | 8 | 96 | Yes |
Standard NDASv4_A100 Family | STANDARD_ND96ASR_V4 | Yes | NvidiaGpu | 8 | 96 | Yes |
standardNDSv2Family | STANDARD_ND40RS_V2 | Yes | NvidiaGpu | 8 | 40 | Yes |
standardNDv5H100Family | STANDARD_ND96IS_H100_v5 | - | NvidiaGpu | 8 | 96 | Yes |
standardNDv5H100Family | STANDARD_ND96ISR_H100_v5 | Yes | NvidiaGpu | 8 | 96 | Yes |
Caution
Small VM SKUs such as Standard_DS1_v2
and Standard_F2s_v2
may be too small for bigger models and may lead to container termination due to insufficient memory, not enough space on the disk, or probe failure as it takes too long to initiate the container. If you face OutOfQuota errors or ReourceNotReady errors, try bigger VM SKUs. If you want to reduce the cost of deploying multiple models with managed online endpoint, see Deployment for several local models.
Note
We recommend having more than 3 instances for deployments in production scenarios. In addition, Azure Machine Learning reserves 20% of your compute resources for performing upgrades on some VM SKUs as described in Virtual machine quota allocation for deployment. VM SKUs that are exempted from this extra quota reservation are specified in the "Skip 20% Reservation" column.