Les på engelsk Rediger

Del via


CA2311: Do not deserialize without first setting NetDataContractSerializer.Binder

Property Value
Rule ID CA2311
Title Do not deserialize without first setting NetDataContractSerializer.Binder
Category Security
Fix is breaking or non-breaking Non-breaking
Enabled by default in .NET 9 No

Cause

A System.Runtime.Serialization.NetDataContractSerializer deserialization method was called or referenced without the Binder property set.

By default, this rule analyzes the entire codebase, but this is configurable.

Advarsel

Restricting types with a SerializationBinder can't prevent all attacks. For more information, see the BinaryFormatter security guide.

Rule description

Insecure deserializers are vulnerable when deserializing untrusted data. An attacker could modify the serialized data to include unexpected types to inject objects with malicious side effects. An attack against an insecure deserializer could, for example, execute commands on the underlying operating system, communicate over the network, or delete files.

This rule finds System.Runtime.Serialization.NetDataContractSerializer deserialization method calls or references, when NetDataContractSerializer doesn't have its Binder set. If you want to disallow any deserialization with NetDataContractSerializer regardless of the Binder property, disable this rule and CA2312, and enable rule CA2310.

How to fix violations

  • Use a secure serializer instead, and don't allow an attacker to specify an arbitrary type to deserialize. For more information see the Preferred alternatives.
  • Make the serialized data tamper-proof. After serialization, cryptographically sign the serialized data. Before deserialization, validate the cryptographic signature. Protect the cryptographic key from being disclosed and design for key rotations.
  • This option makes code vulnerable to denial of service attacks and possible remote code execution attacks in the future. For more information, see the BinaryFormatter security guide. Restrict deserialized types. Implement a custom System.Runtime.Serialization.SerializationBinder. Before deserializing, set the Binder property to an instance of your custom SerializationBinder in all code paths. In the overridden BindToType method, if the type is unexpected, throw an exception to stop deserialization.

When to suppress warnings

NetDataContractSerializer is insecure and can't be made secure.

Configure code to analyze

Use the following options to configure which parts of your codebase to run this rule on.

You can configure these options for just this rule, for all rules they apply to, or for all rules in this category (Security) that they apply to. For more information, see Code quality rule configuration options.

Exclude specific symbols

You can exclude specific symbols, such as types and methods, from analysis by setting the excluded_symbol_names option. For example, to specify that the rule should not run on any code within types named MyType, add the following key-value pair to an .editorconfig file in your project:

ini
dotnet_code_quality.CAXXXX.excluded_symbol_names = MyType

Obs!

Replace the XXXX part of CAXXXX with the ID of the applicable rule.

Allowed symbol name formats in the option value (separated by |):

  • Symbol name only (includes all symbols with the name, regardless of the containing type or namespace).
  • Fully qualified names in the symbol's documentation ID format. Each symbol name requires a symbol-kind prefix, such as M: for methods, T: for types, and N: for namespaces.
  • .ctor for constructors and .cctor for static constructors.

Examples:

Option Value Summary
dotnet_code_quality.CAXXXX.excluded_symbol_names = MyType Matches all symbols named MyType.
dotnet_code_quality.CAXXXX.excluded_symbol_names = MyType1|MyType2 Matches all symbols named either MyType1 or MyType2.
dotnet_code_quality.CAXXXX.excluded_symbol_names = M:NS.MyType.MyMethod(ParamType) Matches specific method MyMethod with the specified fully qualified signature.
dotnet_code_quality.CAXXXX.excluded_symbol_names = M:NS1.MyType1.MyMethod1(ParamType)|M:NS2.MyType2.MyMethod2(ParamType) Matches specific methods MyMethod1 and MyMethod2 with the respective fully qualified signatures.

Exclude specific types and their derived types

You can exclude specific types and their derived types from analysis by setting the excluded_type_names_with_derived_types option. For example, to specify that the rule should not run on any methods within types named MyType and their derived types, add the following key-value pair to an .editorconfig file in your project:

ini
dotnet_code_quality.CAXXXX.excluded_type_names_with_derived_types = MyType

Obs!

Replace the XXXX part of CAXXXX with the ID of the applicable rule.

Allowed symbol name formats in the option value (separated by |):

  • Type name only (includes all types with the name, regardless of the containing type or namespace).
  • Fully qualified names in the symbol's documentation ID format, with an optional T: prefix.

Examples:

Option value Summary
dotnet_code_quality.CAXXXX.excluded_type_names_with_derived_types = MyType Matches all types named MyType and all of their derived types.
dotnet_code_quality.CAXXXX.excluded_type_names_with_derived_types = MyType1|MyType2 Matches all types named either MyType1 or MyType2 and all of their derived types.
dotnet_code_quality.CAXXXX.excluded_type_names_with_derived_types = M:NS.MyType Matches specific type MyType with given fully qualified name and all of its derived types.
dotnet_code_quality.CAXXXX.excluded_type_names_with_derived_types = M:NS1.MyType1|M:NS2.MyType2 Matches specific types MyType1 and MyType2 with the respective fully qualified names, and all of their derived types.

Pseudo-code examples

Violation

C#
using System;
using System.IO;
using System.Runtime.Serialization;

[DataContract]
public class BookRecord
{
    [DataMember]
    public string Title { get; set; }

    [DataMember]
    public AisleLocation Location { get; set; }
}

[DataContract]
public class AisleLocation
{
    [DataMember]
    public char Aisle { get; set; }

    [DataMember]
    public byte Shelf { get; set; }
}

public class ExampleClass
{
    public BookRecord DeserializeBookRecord(byte[] bytes)
    {
        NetDataContractSerializer serializer = new NetDataContractSerializer();
        using (MemoryStream ms = new MemoryStream(bytes))
        {
            return (BookRecord) serializer.Deserialize(ms);    // CA2311 violation
        }
    }
}

Solution

C#
using System;
using System.IO;
using System.Runtime.Serialization;

public class BookRecordSerializationBinder : SerializationBinder
{
    public override Type BindToType(string assemblyName, string typeName)
    {
        // One way to discover expected types is through testing deserialization
        // of **valid** data and logging the types used.

        ////Console.WriteLine($"BindToType('{assemblyName}', '{typeName}')");

        if (typeName == "BookRecord")
        {
            return typeof(BookRecord);
        }
        else if (typeName == "AisleLocation")
        {
            return typeof(AisleLocation);
        }
        else
        {
            throw new ArgumentException("Unexpected type", nameof(typeName));
        }
    }
}

[DataContract]
public class BookRecord
{
    [DataMember]
    public string Title { get; set; }

    [DataMember]
    public AisleLocation Location { get; set; }
}

[DataContract]
public class AisleLocation
{
    [DataMember]
    public char Aisle { get; set; }

    [DataMember]
    public byte Shelf { get; set; }
}

public class ExampleClass
{
    public BookRecord DeserializeBookRecord(byte[] bytes)
    {
        NetDataContractSerializer serializer = new NetDataContractSerializer();
        serializer.Binder = new BookRecordSerializationBinder();
        using (MemoryStream ms = new MemoryStream(bytes))
        {
            return (BookRecord) serializer.Deserialize(ms);
        }
    }
}

CA2310: Do not use insecure deserializer NetDataContractSerializer

CA2312: Ensure NetDataContractSerializer.Binder is set before deserializing