Bewerken

Share via


FlagsAttribute Constructor

Definition

Initializes a new instance of the FlagsAttribute class.

public:
 FlagsAttribute();
public FlagsAttribute ();
Public Sub New ()

Examples

The following example defines a PhoneService enumeration that represents forms of communication provided by a telephone company. It initializes three variables representing the service provided to three different households, and then indicates which households have no service, which households have only cell phone service, and which households have both cell phone and land line service. Finally, it implicitly calls the Enum.ToString(String) method to display the types of service provided to each household.

using namespace System;

[Flags]
enum class PhoneService
{
   None = 0,
   LandLine = 1,
   Cell = 2,
   Fax = 4,
   Internet = 8,
   Other = 16
};

void main()
{
   // Define three variables representing the types of phone service
   // in three households.
   PhoneService household1 = PhoneService::LandLine | PhoneService::Cell |
                             PhoneService::Internet;
   PhoneService household2 = PhoneService::None;
   PhoneService household3 = PhoneService::Cell | PhoneService::Internet;

   // Store the variables in an array for ease of access.
   array<PhoneService>^ households = { household1, household2, household3 };

   // Which households have no service?
   for (int ctr = 0; ctr < households->Length; ctr++)
      Console::WriteLine("Household {0} has phone service: {1}",
                         ctr + 1,
                         households[ctr] == PhoneService::None ?
                             "No" : "Yes");
   Console::WriteLine();

   // Which households have cell phone service?
   for (int ctr = 0; ctr < households->Length; ctr++)
      Console::WriteLine("Household {0} has cell phone service: {1}",
                         ctr + 1,
                         (households[ctr] & PhoneService::Cell) == PhoneService::Cell ?
                            "Yes" : "No");
   Console::WriteLine();

   // Which households have cell phones and land lines?
   PhoneService cellAndLand = PhoneService::Cell | PhoneService::LandLine;
   for (int ctr = 0; ctr < households->Length; ctr++)
      Console::WriteLine("Household {0} has cell and land line service: {1}",
                         ctr + 1,
                         (households[ctr] & cellAndLand) == cellAndLand ?
                            "Yes" : "No");
   Console::WriteLine();

   // List all types of service of each household?//
   for (int ctr = 0; ctr < households->Length; ctr++)
      Console::WriteLine("Household {0} has: {1:G}",
                         ctr + 1, households[ctr]);
   Console::WriteLine();
}
// The example displays the following output:
//    Household 1 has phone service: Yes
//    Household 2 has phone service: No
//    Household 3 has phone service: Yes
//
//    Household 1 has cell phone service: Yes
//    Household 2 has cell phone service: No
//    Household 3 has cell phone service: Yes
//
//    Household 1 has cell and land line service: Yes
//    Household 2 has cell and land line service: No
//    Household 3 has cell and land line service: No
//
//    Household 1 has: LandLine, Cell, Internet
//    Household 2 has: None
//    Household 3 has: Cell, Internet
using System;

[Flags]
public enum PhoneService
{
   None = 0,
   LandLine = 1,
   Cell = 2,
   Fax = 4,
   Internet = 8,
   Other = 16
}

public class Example
{
   public static void Main()
   {
      // Define three variables representing the types of phone service
      // in three households.
      var household1 = PhoneService.LandLine | PhoneService.Cell |
                       PhoneService.Internet;
      var household2 = PhoneService.None;
      var household3 = PhoneService.Cell | PhoneService.Internet;

      // Store the variables in an array for ease of access.
      PhoneService[] households = { household1, household2, household3 };

      // Which households have no service?
      for (int ctr = 0; ctr < households.Length; ctr++)
         Console.WriteLine("Household {0} has phone service: {1}",
                           ctr + 1,
                           households[ctr] == PhoneService.None ?
                               "No" : "Yes");
      Console.WriteLine();

      // Which households have cell phone service?
      for (int ctr = 0; ctr < households.Length; ctr++)
         Console.WriteLine("Household {0} has cell phone service: {1}",
                           ctr + 1,
                           (households[ctr] & PhoneService.Cell) == PhoneService.Cell ?
                              "Yes" : "No");
      Console.WriteLine();

      // Which households have cell phones and land lines?
      var cellAndLand = PhoneService.Cell | PhoneService.LandLine;
      for (int ctr = 0; ctr < households.Length; ctr++)
         Console.WriteLine("Household {0} has cell and land line service: {1}",
                           ctr + 1,
                           (households[ctr] & cellAndLand) == cellAndLand ?
                              "Yes" : "No");
      Console.WriteLine();

      // List all types of service of each household?//
      for (int ctr = 0; ctr < households.Length; ctr++)
         Console.WriteLine("Household {0} has: {1:G}",
                           ctr + 1, households[ctr]);
      Console.WriteLine();
   }
}
// The example displays the following output:
//    Household 1 has phone service: Yes
//    Household 2 has phone service: No
//    Household 3 has phone service: Yes
//
//    Household 1 has cell phone service: Yes
//    Household 2 has cell phone service: No
//    Household 3 has cell phone service: Yes
//
//    Household 1 has cell and land line service: Yes
//    Household 2 has cell and land line service: No
//    Household 3 has cell and land line service: No
//
//    Household 1 has: LandLine, Cell, Internet
//    Household 2 has: None
//    Household 3 has: Cell, Internet
open System

[<Flags>]
type PhoneService =
    | None = 0
    | LandLine = 1
    | Cell = 2
    | Fax = 4
    | Internet = 8
    | Other = 16

// Define three variables representing the types of phone service
// in three households.
let household1 = 
    PhoneService.LandLine ||| PhoneService.Cell ||| PhoneService.Internet

let household2 = 
    PhoneService.None

let household3 = 
    PhoneService.Cell ||| PhoneService.Internet

// Store the variables in a list for ease of access.
let households =
    [ household1; household2; household3 ]

// Which households have no service?
for i = 0 to households.Length - 1 do
    printfn $"""Household {i + 1} has phone service: {if households[i] = PhoneService.None then "No" else "Yes"}"""
printfn ""

// Which households have cell phone service?
for i = 0 to households.Length - 1 do
    printfn $"""Household {i + 1} has cell phone service: {if households[i] &&& PhoneService.Cell = PhoneService.Cell then "Yes" else "No"}"""
printfn ""

// Which households have cell phones and land lines?
let cellAndLand = 
    PhoneService.Cell ||| PhoneService.LandLine

for i = 0 to households.Length - 1 do
    printfn $"""Household {i + 1} has cell and land line service: {if households[i] &&& cellAndLand = cellAndLand then "Yes" else "No"}"""
printfn ""

// List all types of service of each household?//
for i = 0 to households.Length - 1 do
    printfn $"Household {i + 1} has: {households[i]:G}"

// The example displays the following output:
//    Household 1 has phone service: Yes
//    Household 2 has phone service: No
//    Household 3 has phone service: Yes
//
//    Household 1 has cell phone service: Yes
//    Household 2 has cell phone service: No
//    Household 3 has cell phone service: Yes
//
//    Household 1 has cell and land line service: Yes
//    Household 2 has cell and land line service: No
//    Household 3 has cell and land line service: No
//
//    Household 1 has: LandLine, Cell, Internet
//    Household 2 has: None
//    Household 3 has: Cell, Internet
<Flags()>
Public Enum PhoneService As Integer
   None = 0
   LandLine = 1
   Cell = 2
   Fax = 4
   Internet = 8
   Other = 16
End Enum

Module Example
   Public Sub Main()
      ' Define three variables representing the types of phone service
      ' in three households.
      Dim household1 As PhoneService = PhoneService.LandLine Or
                                       PhoneService.Cell Or
                                       PhoneService.Internet
      Dim household2 As PhoneService = PhoneService.None
      Dim household3 As PhoneService = PhoneService.Cell Or
                                       PhoneService.Internet

      ' Store the variables in an array for ease of access.
      Dim households() As PhoneService = { household1, household2,
                                           household3 }

      ' Which households have no service?
      For ctr As Integer = 0 To households.Length - 1
         Console.WriteLine("Household {0} has phone service: {1}",
                           ctr + 1,
                           If(households(ctr) = PhoneService.None,
                              "No", "Yes"))
      Next
      Console.WriteLine()
      
      ' Which households have cell phone service?
      For ctr As Integer = 0 To households.Length - 1
         Console.WriteLine("Household {0} has cell phone service: {1}",
                           ctr + 1,
                           If((households(ctr) And PhoneService.Cell) = PhoneService.Cell,
                              "Yes", "No"))
      Next
      Console.WriteLine()
      
      ' Which households have cell phones and land lines?
      Dim cellAndLand As PhoneService = PhoneService.Cell Or PhoneService.LandLine
      For ctr As Integer = 0 To households.Length - 1
         Console.WriteLine("Household {0} has cell and land line service: {1}",
                           ctr + 1,
                           If((households(ctr) And cellAndLand) = cellAndLand,
                              "Yes", "No"))
      Next
      Console.WriteLine()
      
      ' List all types of service of each household?'
      For ctr As Integer = 0 To households.Length - 1
         Console.WriteLine("Household {0} has: {1:G}",
                           ctr + 1, households(ctr))
      Next
      Console.WriteLine()
   End Sub
End Module
' The example displays the following output:
'    Household 1 has phone service: Yes
'    Household 2 has phone service: No
'    Household 3 has phone service: Yes
'
'    Household 1 has cell phone service: Yes
'    Household 2 has cell phone service: No
'    Household 3 has cell phone service: Yes
'
'    Household 1 has cell and land line service: Yes
'    Household 2 has cell and land line service: No
'    Household 3 has cell and land line service: No
'
'    Household 1 has: LandLine, Cell, Internet
'    Household 2 has: None
'    Household 3 has: Cell, Internet

The following example illustrates the use of the FlagsAttribute attribute and shows the effect on the ToString method of using FlagsAttribute on an Enum declaration.

using namespace System;

// Define an Enum without FlagsAttribute.
public enum class SingleHue : short
{
   None = 0,
   Black = 1,
   Red = 2,
   Green = 4,
   Blue = 8
};

// Define an Enum with FlagsAttribute.
[Flags]
enum class MultiHue : short
{
   None = 0,
   Black = 1,
   Red = 2,
   Green = 4,
   Blue = 8
};

int main()
{
   // Display all possible combinations of values.
   Console::WriteLine(
        "All possible combinations of values without FlagsAttribute:");
   for (int val = 0; val <= 16; val++)
      Console::WriteLine("{0,3} - {1:G}", val, (SingleHue)val);
      
   Console::WriteLine(
        "\nAll possible combinations of values with FlagsAttribute:");
   
   // Display all combinations of values, and invalid values.
   for (int val = 0; val <= 16; val++ )
      Console::WriteLine("{0,3} - {1:G}", val, (MultiHue)val);
}
// The example displays the following output:
//       All possible combinations of values without FlagsAttribute:
//         0 - None
//         1 - Black
//         2 - Red
//         3 - 3
//         4 - Green
//         5 - 5
//         6 - 6
//         7 - 7
//         8 - Blue
//         9 - 9
//        10 - 10
//        11 - 11
//        12 - 12
//        13 - 13
//        14 - 14
//        15 - 15
//        16 - 16
//       
//       All possible combinations of values with FlagsAttribute:
//         0 - None
//         1 - Black
//         2 - Red
//         3 - Black, Red
//         4 - Green
//         5 - Black, Green
//         6 - Red, Green
//         7 - Black, Red, Green
//         8 - Blue
//         9 - Black, Blue
//        10 - Red, Blue
//        11 - Black, Red, Blue
//        12 - Green, Blue
//        13 - Black, Green, Blue
//        14 - Red, Green, Blue
//        15 - Black, Red, Green, Blue
//        16 - 16
using System;

class Example
{
   // Define an Enum without FlagsAttribute.
   enum SingleHue : short
   {
      None = 0,
      Black = 1,
      Red = 2,
      Green = 4,
      Blue = 8
   };

   // Define an Enum with FlagsAttribute.
   [Flags]
   enum MultiHue : short
   {
      None = 0,
      Black = 1,
      Red = 2,
      Green = 4,
      Blue = 8
   };

   static void Main( )
   {
      // Display all possible combinations of values.
      Console.WriteLine(
           "All possible combinations of values without FlagsAttribute:");
      for(int val = 0; val <= 16; val++ )
         Console.WriteLine( "{0,3} - {1:G}", val, (SingleHue)val);

      // Display all combinations of values, and invalid values.
      Console.WriteLine(
           "\nAll possible combinations of values with FlagsAttribute:");
      for( int val = 0; val <= 16; val++ )
         Console.WriteLine( "{0,3} - {1:G}", val, (MultiHue)val);
   }
}
// The example displays the following output:
//       All possible combinations of values without FlagsAttribute:
//         0 - None
//         1 - Black
//         2 - Red
//         3 - 3
//         4 - Green
//         5 - 5
//         6 - 6
//         7 - 7
//         8 - Blue
//         9 - 9
//        10 - 10
//        11 - 11
//        12 - 12
//        13 - 13
//        14 - 14
//        15 - 15
//        16 - 16
//
//       All possible combinations of values with FlagsAttribute:
//         0 - None
//         1 - Black
//         2 - Red
//         3 - Black, Red
//         4 - Green
//         5 - Black, Green
//         6 - Red, Green
//         7 - Black, Red, Green
//         8 - Blue
//         9 - Black, Blue
//        10 - Red, Blue
//        11 - Black, Red, Blue
//        12 - Green, Blue
//        13 - Black, Green, Blue
//        14 - Red, Green, Blue
//        15 - Black, Red, Green, Blue
//        16 - 16
open System

// Define an Enum without FlagsAttribute.
type SingleHue =
    | None = 0
    | Black = 1
    | Red = 2
    | Green = 4
    | Blue = 8

// Define an Enum with FlagsAttribute.
[<Flags>]
type MultiHue =
    | None = 0
    | Black = 1
    | Red = 2
    | Green = 4
    | Blue = 8

// Display all possible combinations of values.
printfn "All possible combinations of values without FlagsAttribute:"
for i = 0 to 16 do
    printfn $"{i,3} - {enum<SingleHue> i:G}"

// Display all combinations of values, and invalid values.
printfn "\nAll possible combinations of values with FlagsAttribute:"
for i = 0 to 16 do
    printfn $"{i,3} - {enum<MultiHue> i:G}"

// The example displays the following output:
//       All possible combinations of values without FlagsAttribute:
//         0 - None
//         1 - Black
//         2 - Red
//         3 - 3
//         4 - Green
//         5 - 5
//         6 - 6
//         7 - 7
//         8 - Blue
//         9 - 9
//        10 - 10
//        11 - 11
//        12 - 12
//        13 - 13
//        14 - 14
//        15 - 15
//        16 - 16
//
//       All possible combinations of values with FlagsAttribute:
//         0 - None
//         1 - Black
//         2 - Red
//         3 - Black, Red
//         4 - Green
//         5 - Black, Green
//         6 - Red, Green
//         7 - Black, Red, Green
//         8 - Blue
//         9 - Black, Blue
//        10 - Red, Blue
//        11 - Black, Red, Blue
//        12 - Green, Blue
//        13 - Black, Green, Blue
//        14 - Red, Green, Blue
//        15 - Black, Red, Green, Blue
//        16 - 16
Module Example
   ' Define an Enum without FlagsAttribute.
   Enum SingleHue As Short
      None = 0
      Black = 1
      Red = 2
      Green = 4
      Blue = 8
   End Enum

   ' Define an Enum with FlagsAttribute.
   <Flags()> 
   Enum MultiHue As Short
      None = 0
      Black = 1
      Red = 2
      Green = 4
      Blue = 8
   End Enum

   Sub Main()
      ' Display all possible combinations of values.
      Console.WriteLine(
           "All possible combinations of values without FlagsAttribute:")
      For val As Integer = 0 To 16
         Console.WriteLine("{0,3} - {1:G}", val, CType(val, SingleHue))
     Next 
     Console.WriteLine()
     
     ' Display all combinations of values, and invalid values.
     Console.WriteLine( 
          "All possible combinations of values with FlagsAttribute:")
     For val As Integer = 0 To 16
        Console.WriteLine( "{0,3} - {1:G}", val, CType(val, MultiHue))
     Next 
   End Sub 
End Module 
' The example displays the following output:
'       All possible combinations of values without FlagsAttribute:
'         0 - None
'         1 - Black
'         2 - Red
'         3 - 3
'         4 - Green
'         5 - 5
'         6 - 6
'         7 - 7
'         8 - Blue
'         9 - 9
'        10 - 10
'        11 - 11
'        12 - 12
'        13 - 13
'        14 - 14
'        15 - 15
'        16 - 16
'       
'       All possible combinations of values with FlagsAttribute:
'         0 - None
'         1 - Black
'         2 - Red
'         3 - Black, Red
'         4 - Green
'         5 - Black, Green
'         6 - Red, Green
'         7 - Black, Red, Green
'         8 - Blue
'         9 - Black, Blue
'        10 - Red, Blue
'        11 - Black, Red, Blue
'        12 - Green, Blue
'        13 - Black, Green, Blue
'        14 - Red, Green, Blue
'        15 - Black, Red, Green, Blue
'        16 - 16

Applies to