Compartilhar via


Início Rápido: Implantar um cluster do Host de Contêiner do Linux do Azure para AKS usando a CLI do Azure

Implantar no Azure

Comece a usar o Host de Contêiner do Linux do Azure por meio da CLI do Azure a fim de implantar um cluster do Host de Contêiner do Linux do Azure para AKS. Depois de instalar os pré-requisitos, você criará um grupo de recursos, criará um cluster do AKS, estabelecerá uma conexão com esse cluster e executará um aplicativo de vários contêineres de exemplo nele.

Importante

A partir de 30 de novembro de 2025, o AKS (Serviço de Kubernetes do Azure) não dá mais suporte ou fornece atualizações de segurança para o Azure Linux 2.0. A imagem do nó do Azure no Linux 2.0 foi congelada na versão 202512.06.0. A partir de 31 de março de 2026, as imagens de nó serão removidas e não será possível escalar os grupos de nós. Migre para uma versão do Azure Linux com suporte atualizando os pools de nós para uma versão do Kubernetes com suporte ou migrando para o osSku AzureLinux3. Para obter mais informações, consulte Desativação: pools de nós do Azure Linux 2.0 no AKS.

Pré-requisitos

Criar um grupo de recursos

Um grupo de recursos do Azure é um grupo lógico no qual os recursos do Azure são implantados e gerenciados. Ao criar um grupo de recursos, é necessário especificar um local. Essa localização é:

  • A localização de armazenamento dos metadados do grupo de recursos.
  • Esse será o local em que seus recursos serão executados no Azure caso você não especifique outra região durante a criação de recursos.

Crie um grupo de recursos usando o comando az group create.

export RANDOM_ID="$(openssl rand -hex 3)"
export MY_RESOURCE_GROUP_NAME="myAzureLinuxResourceGroup$RANDOM_ID"
export REGION="westeurope"

az group create --name $MY_RESOURCE_GROUP_NAME --location $REGION

Resultados:

{
  "id": "/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx/resourceGroups/$MY_RESOURCE_GROUP_NAMExxxxxx",
  "location": "$REGION",
  "managedBy": null,
  "name": "$MY_RESOURCE_GROUP_NAME",
  "properties": {
    "provisioningState": "Succeeded"
  },
  "tags": null,
  "type": "Microsoft.Resources/resourceGroups"
}

Criar um cluster do Host de Contêiner do Linux do Azure

Crie um cluster do AKS usando o comando az aks create com o parâmetro --os-sku para provisioná-lo com uma imagem do Linux do Azure.

export MY_AZ_CLUSTER_NAME="myAzureLinuxCluster$RANDOM_ID"

az aks create --name $MY_AZ_CLUSTER_NAME --resource-group $MY_RESOURCE_GROUP_NAME --os-sku AzureLinux

Após alguns minutos, o comando será concluído e retornará informações no formato JSON sobre o cluster.

Conectar-se ao cluster

Para gerenciar um cluster Kubernetes, use o cliente de linha de comando do Kubernetes, kubectl. kubectl já está instalado se você usa o Azure Cloud Shell. Para instalar kubectl localmente, use o comando az aks install-cli.

  1. Configure o kubectl para se conectar ao cluster do Kubernetes usando o comando az aks get-credentials. Este comando baixa as credenciais e configura a CLI do Kubernetes para usá-las.

    az aks get-credentials --resource-group $MY_RESOURCE_GROUP_NAME --name $MY_AZ_CLUSTER_NAME
    
  2. Verifique a conexão com o cluster usando o comando kubectl get. Esse comando retorna uma lista dos nós de cluster.

    kubectl get nodes
    

Implantar o aplicativo

A fim de implantar o aplicativo, use um arquivo de manifesto para criar todos os objetos necessários para executar o Aplicativo da Loja do AKS. Um arquivo de manifesto do Kubernetes define o estado desejado de um cluster, como quais imagens de contêiner executar. O manifesto inclui as seguintes implantações e serviços do Kubernetes:

Captura de tela da arquitetura de exemplo da Azure Store.

  • Vitrine Web: aplicativo Web para clientes visualizarem produtos e fazerem pedidos.
  • Serviço de produto: mostra informações do produto.
  • Serviço de pedido: realiza pedidos.
  • Rabbit MQ: fila de mensagens para uma fila de pedidos.

Observação

Não é recomendável executar contêineres com estado, como o Rabbit MQ, sem armazenamento persistente para produção. Eles são usados aqui para simplificar, mas recomendamos o uso de serviços gerenciados, como o Azure CosmosDB ou Barramento de Serviço do Azure.

  1. Crie um arquivo chamado aks-store-quickstart.yaml e copie-o para o manifesto a seguir:

    apiVersion: apps/v1
    kind: StatefulSet
    metadata:
      name: rabbitmq
    spec:
      serviceName: rabbitmq
      replicas: 1
      selector:
        matchLabels:
          app: rabbitmq
      template:
        metadata:
          labels:
            app: rabbitmq
        spec:
          nodeSelector:
            "kubernetes.io/os": linux
          containers:
          - name: rabbitmq
            image: mcr.microsoft.com/mirror/docker/library/rabbitmq:3.10-management-alpine
            ports:
            - containerPort: 5672
              name: rabbitmq-amqp
            - containerPort: 15672
              name: rabbitmq-http
            env:
            - name: RABBITMQ_DEFAULT_USER
              value: "username"
            - name: RABBITMQ_DEFAULT_PASS
              value: "password"
            resources:
              requests:
                cpu: 10m
                memory: 128Mi
              limits:
                cpu: 250m
                memory: 256Mi
            volumeMounts:
            - name: rabbitmq-enabled-plugins
              mountPath: /etc/rabbitmq/enabled_plugins
              subPath: enabled_plugins
          volumes:
          - name: rabbitmq-enabled-plugins
            configMap:
              name: rabbitmq-enabled-plugins
              items:
              - key: rabbitmq_enabled_plugins
                path: enabled_plugins
    ---
    apiVersion: v1
    data:
      rabbitmq_enabled_plugins: |
        [rabbitmq_management,rabbitmq_prometheus,rabbitmq_amqp1_0].
    kind: ConfigMap
    metadata:
      name: rabbitmq-enabled-plugins            
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: rabbitmq
    spec:
      selector:
        app: rabbitmq
      ports:
        - name: rabbitmq-amqp
          port: 5672
          targetPort: 5672
        - name: rabbitmq-http
          port: 15672
          targetPort: 15672
      type: ClusterIP
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: order-service
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: order-service
      template:
        metadata:
          labels:
            app: order-service
        spec:
          nodeSelector:
            "kubernetes.io/os": linux
          containers:
          - name: order-service
            image: ghcr.io/azure-samples/aks-store-demo/order-service:latest
            ports:
            - containerPort: 3000
            env:
            - name: ORDER_QUEUE_HOSTNAME
              value: "rabbitmq"
            - name: ORDER_QUEUE_PORT
              value: "5672"
            - name: ORDER_QUEUE_USERNAME
              value: "username"
            - name: ORDER_QUEUE_PASSWORD
              value: "password"
            - name: ORDER_QUEUE_NAME
              value: "orders"
            - name: FASTIFY_ADDRESS
              value: "0.0.0.0"
            resources:
              requests:
                cpu: 1m
                memory: 50Mi
              limits:
                cpu: 75m
                memory: 128Mi
            startupProbe:
              httpGet:
                path: /health
                port: 3000
              failureThreshold: 5
              initialDelaySeconds: 20
              periodSeconds: 10
            readinessProbe:
              httpGet:
                path: /health
                port: 3000
              failureThreshold: 3
              initialDelaySeconds: 3
              periodSeconds: 5
            livenessProbe:
              httpGet:
                path: /health
                port: 3000
              failureThreshold: 5
              initialDelaySeconds: 3
              periodSeconds: 3
          initContainers:
          - name: wait-for-rabbitmq
            image: busybox
            command: ['sh', '-c', 'until nc -zv rabbitmq 5672; do echo waiting for rabbitmq; sleep 2; done;']
            resources:
              requests:
                cpu: 1m
                memory: 50Mi
              limits:
                cpu: 75m
                memory: 128Mi    
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: order-service
    spec:
      type: ClusterIP
      ports:
      - name: http
        port: 3000
        targetPort: 3000
      selector:
        app: order-service
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: product-service
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: product-service
      template:
        metadata:
          labels:
            app: product-service
        spec:
          nodeSelector:
            "kubernetes.io/os": linux
          containers:
          - name: product-service
            image: ghcr.io/azure-samples/aks-store-demo/product-service:latest
            ports:
            - containerPort: 3002
            env: 
            - name: AI_SERVICE_URL
              value: "http://ai-service:5001/"
            resources:
              requests:
                cpu: 1m
                memory: 1Mi
              limits:
                cpu: 2m
                memory: 20Mi
            readinessProbe:
              httpGet:
                path: /health
                port: 3002
              failureThreshold: 3
              initialDelaySeconds: 3
              periodSeconds: 5
            livenessProbe:
              httpGet:
                path: /health
                port: 3002
              failureThreshold: 5
              initialDelaySeconds: 3
              periodSeconds: 3
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: product-service
    spec:
      type: ClusterIP
      ports:
      - name: http
        port: 3002
        targetPort: 3002
      selector:
        app: product-service
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: store-front
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: store-front
      template:
        metadata:
          labels:
            app: store-front
        spec:
          nodeSelector:
            "kubernetes.io/os": linux
          containers:
          - name: store-front
            image: ghcr.io/azure-samples/aks-store-demo/store-front:latest
            ports:
            - containerPort: 8080
              name: store-front
            env: 
            - name: VUE_APP_ORDER_SERVICE_URL
              value: "http://order-service:3000/"
            - name: VUE_APP_PRODUCT_SERVICE_URL
              value: "http://product-service:3002/"
            resources:
              requests:
                cpu: 1m
                memory: 200Mi
              limits:
                cpu: 1000m
                memory: 512Mi
            startupProbe:
              httpGet:
                path: /health
                port: 8080
              failureThreshold: 3
              initialDelaySeconds: 5
              periodSeconds: 5
            readinessProbe:
              httpGet:
                path: /health
                port: 8080
              failureThreshold: 3
              initialDelaySeconds: 3
              periodSeconds: 3
            livenessProbe:
              httpGet:
                path: /health
                port: 8080
              failureThreshold: 5
              initialDelaySeconds: 3
              periodSeconds: 3
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: store-front
    spec:
      ports:
      - port: 80
        targetPort: 8080
      selector:
        app: store-front
      type: LoadBalancer
    

    Se você criar e salvar o arquivo YAML localmente, poderá carregar o arquivo de manifesto no diretório padrão no CloudShell selecionando o botão Carregar/Baixar arquivos e selecionando o arquivo no sistema de arquivos local.

  2. Implante o aplicativo usando o comando kubectl apply e especifique o nome do manifesto YAML.

    kubectl apply -f aks-store-quickstart.yaml
    

Testar o aplicativo

Você pode validar se o aplicativo está em execução visitando o endereço IP público ou a URL do aplicativo.

Obtenha a URL do aplicativo usando os seguintes comandos:

runtime="5 minutes"
endtime=$(date -ud "$runtime" +%s)
while [[ $(date -u +%s) -le $endtime ]]
do
   STATUS=$(kubectl get pods -l app=store-front -o 'jsonpath={..status.conditions[?(@.type=="Ready")].status}')
   echo $STATUS
   if [ "$STATUS" == 'True' ]
   then
      export IP_ADDRESS=$(kubectl get service store-front --output 'jsonpath={..status.loadBalancer.ingress[0].ip}')
      echo "Service IP Address: $IP_ADDRESS"
      break
   else
      sleep 10
   fi
done
curl $IP_ADDRESS

Resultados:

<!doctype html>
<html lang="">
   <head>
      <meta charset="utf-8">
      <meta http-equiv="X-UA-Compatible" content="IE=edge">
      <meta name="viewport" content="width=device-width,initial-scale=1">
      <link rel="icon" href="/favicon.ico">
      <title>store-front</title>
      <script defer="defer" src="/js/chunk-vendors.df69ae47.js"></script>
      <script defer="defer" src="/js/app.7e8cfbb2.js"></script>
      <link href="/css/app.a5dc49f6.css" rel="stylesheet">
   </head>
   <body>
      <div id="app"></div>
   </body>
</html>
echo "You can now visit your web server at $IP_ADDRESS"

Excluir o cluster

Se não precisar mais deles, você pode limpar recursos desnecessários para evitar cobranças do Azure. Você pode remover o grupo de recursos, o serviço de contêiner e todos os recursos relacionados usando o comando az group delete.

Próximas etapas

Neste início rápido, você implantou um cluster do Host de Contêiner do Linux do Azure. Para saber mais sobre o Host de Contêiner do Linux do Azure e conferir um exemplo completo de implantação e gerenciamento de cluster, prossiga para o tutorial do Host de Contêiner do Linux do Azure.