Ler em inglês

Compartilhar via


LINEST

Aplica-se a:Coluna calculadaTabela calculadaMedidaCálculo visual

Usa o método dos mínimos quadrados para calcular uma linha reta que melhor se ajusta aos dados fornecidos e, em seguida, retorna uma tabela que a descreve. A equação para a linha tem o seguinte formato: y = Slope1*x1 + Slope2*x2 + ... + Intercept.

Sintaxe

LINEST ( <columnY>, <columnX>[, …][, <const>] )

Parâmetros

Termo Definição
columnY A coluna de valores y conhecidos. Deve ter o tipo escalar.
columnX As colunas de valores x conhecidos. Deve ter o tipo escalar. Pelo menos um deve ser fornecido.
const (Opcional) Um valor TRUE/FALSE constante especificando se a constante Intercept deve ser forçada para igual a 0.
Se TRUE ou omitido, o valor Intercept será calculado normalmente. Se FALSE, o valor Intercept será definido como zero.

Retornar valor

Uma tabela de linha única descrevendo a linha, além de estatísticas adicionais. Estas são as colunas disponíveis:

  • Slope1, Slope2, ..., SlopeN: os coeficientes correspondentes a cada valor x;
  • Intercept: valor de interceptação;
  • StandardErrorSlope1, StandardErrorSlope2, ..., StandardErrorSlopeN: os valores de erro padrão para os coeficientes Slope1, Slope2, ..., SlopeN;
  • StandardErrorIntercept: o valor de erro padrão para a constante Intercept;
  • CoefficientOfDetermination: o coeficiente de determinação (r²). Compara valores estimados e reais de y e varia em valores de 0 a 1: quanto maior o valor, maior a correlação na amostra;
  • StandardError: o erro padrão para a estimativa de y;
  • FStatistic: a estatística F, ou o valor F observado. Use a estatística F para determinar se a relação observada entre as variáveis dependentes e independentes ocorre por acaso;
  • DegreesOfFreedom: os graus de liberdade. Use esse valor para obter ajuda ao encontrar valores F críticos em uma tabela estatística e determinar um nível de confiança para o modelo;
  • RegressionSumOfSquares: a soma dos quadrados da regressão;
  • ResidualSumOfSquares: a soma residual dos quadrados.

Comentários

<columnY> e <columnX> devem pertencer à mesma tabela.

Exemplo 1

A seguinte consulta DAX:

EVALUATE LINEST(
	'FactInternetSales'[SalesAmount],
	'FactInternetSales'[TotalProductCost]
)

Retorna uma tabela de linha única com dez colunas:

Slope1 Interceptação StandardErrorSlope1 StandardErrorIntercept CoefficientOfDetermination
1.67703250456677 6.34550460373026 0.000448675725548806 0.279131821917317 0.995695557281456
StandardError FStatistic DegreesOfFreedom RegressionSumOfSquares ResidualSumOfSquares
60.9171030357485 13970688.6139993 60396 51843736761.658 224123120.339218
  • Slope1 e Intercept: os coeficientes do modelo linear calculado;
  • StandardErrorSlope1 e StandardErrorIntercept: os valores de erro padrão para os coeficientes acima;
  • CoefficientOfDetermination, StandardError, FStatistic, DegreesOfFreedom, RegressionSumOfSquares e ResidualSumOfSquares: estatísticas de regressão sobre o modelo.

Para uma determinada venda pela Internet, este modelo prevê o valor da venda de acordo com a seguinte fórmula:

SalesAmount = Slope1 * TotalProductCost + Intercept

Exemplo 2

A seguinte consulta DAX:

EVALUATE LINEST(
	'DimCustomer'[TotalSalesAmount],
	'DimCustomer'[YearlyIncome],
	'DimCustomer'[TotalChildren],
	'DimCustomer'[BirthDate]
)

Retorna uma tabela de linha única com quatorze colunas:

  • Slope1
  • Slope2
  • Slope3
  • Interceptação
  • StandardErrorSlope1
  • StandardErrorSlope2
  • StandardErrorSlope3
  • StandardErrorIntercept
  • CoefficientOfDetermination
  • StandardError
  • FStatistic
  • DegreesOfFreedom
  • RegressionSumOfSquares
  • ResidualSumOfSquares

Para um determinado cliente, esse modelo prevê o total de vendas de acordo com a seguinte fórmula (a data de nascimento é convertida automaticamente em um número):

TotalSalesAmount = Slope1 * YearlyIncome + Slope2 * TotalChildren + Slope3 * BirthDate + Intercept

LINESTX
Funções estatísticas