Поделиться через



Август 2016

ТОМ 31 ВЫПУСК 8

Тесты - Упрощенная генерация случайных чисел

Джеймс Маккафри

Джеймс МаккафриСлучайные числа используются во многих алгоритма х машинного обучения. Например, распространенной задачей является выбор случайной строки матрицы. В C# код может выглядеть так:

double[][] matrix = new double[20][];  // 20 rows
matrix = LoadData("C:\\Somewhere\\SomeFile.txt");
int lo = 0;
int hi = 20;
Random rnd = new Random(0);  // Create generator, seed = 0
x = rnd.NextDouble();  // [0.0, 1.0)
int randomRow = (int)((hi - lo) * x + lo);  // [0, 19]
// Что-то делаем с randomRow

В этой статье я покажу, как генерировать случайные числа с помощью четырех разных алгоритмов: алгоритма Лемера (Lehmer), линейного конгруэнтного алгоритма ( linear congruential algorithm), алгоритма Вичмана-Хилла (Wichmann-Hill) и алгоритма Фибоначчи с запаздываниями (lagged Fibonacci algorithm).

Но зачем обременять себя созданием собственного генератора случайных чисел (random number generator, RNG), когда в Microsoft .NET Framework уже есть эффективный и простой в использовании класс Random? Существует два сценария, где вам может понадобиться создать свой RNG. Во-первых, в разные языки программирования встроены разные алгоритмы генерации случайных чисел, а значит, если вы пишете код, который будет переноситься на несколько языков, можно создать собственный RNG, чтобы реализовать его во всех нужных вам языках. Во-вторых, некоторые языки, в частности R, имеют лишь глобальный RNG, поэтому, если вы захотите создать несколько генераторов, вам придется писать свой RNG.

Хороший способ получить представление о том, куда я клоню в этой статье, — взглянуть на демонстрационную программу на рис. 1. Демонстрационная программа начинает с создания очень простого RNGЮ используя алгоритм Лемера. Затем с помощью RNG генерируется 1000 случайных целых чисел между 0 и 9 включительно. За кулисами записываются счетчики для каждого из сгенерированных целых чисел, которые потом отображаются на экране. Этот процесс повторяется для линейного конгруэнтного алгоритма, алгоритма Вичмана-Хилла и алгоритм Фибоначчи с запаздываниями.

Демонстрация упрощенной генерации случайных чисел
Рис. 1. Демонстрация упрощенной генерации случайных чисел

В этой статье предполагается, что вы умеете программировать хотя бы на среднем уровне, но ничего не знаете о генерации случайных чисел. Демонстрационная программа написана на C#, но, поскольку один из основных случаев использования собственной генерации случайных чисел — написание портируемого кода, эта программа разработана так, чтобы ее можно было легко транслировать на другие языки.

Алгоритм Лемера

Самый простой приемлемый метод генерации случайных чисел — алгоритм Лемера. (Для простоты я использую термин «генерация случайных чисел» вместо более точного термина «генерация псевдослучайных чисел».) Выраженный в символьном виде, алгоритм Лемера представляет собой следующее:

X(i) = a * X(i-1) mod m

На словах это звучит так: «новое случайное число является старым случайным числом, умножаемым на константу a, после чего над результатом выполняется операция по модулю константы m». Например, предположим, что в некий момент текущее случайное число равно 104, a = 3 и m = 100. Тогда новое случайное число будет равно 3 * 104 mod 100 = 312 mod 100 = 12. Вроде бы просто, но в реализации этого алгоритма много хитроумных деталей.

Чтобы создать демонстрационную программу, я запустил Visual Studio, выбрал шаблон C# Console Application и назвал проект RandomNumbers. В этой программе нет значимых зависимостей от .NET Framework, поэтому подойдет любая версия Visual Studio.

После загрузки кода шаблона в окно редактора я переименовал в окне Solution Explorer файл Program.cs в более описательный RandomNumbersProgram.cs, и Visual Studio автоматически переименовала класс Program за меня. В начале кода я удалил все лишние выражения using, оставив только ссылки на пространства имен верхнего уровня System и Collections.Generic.

Затем я добавил класс с именем LehmerRng для реализации RNG-алгоритма Лемера. Код показан на рис. 2. Версия алгоритма Лемера за 1988 год использует a = 16807 и m = 2147483647 (которое является int.MaxValue). Позднее, в 1993 году Лемер предложил другую версию, где a = 48271 как чуть более качественную альтернативу. Эти значения берутся из математической теории. Демонстрационный код основан на знаменитой статье С. К. Парка (S. K. Park) и К. У. Миллера (K. W. Miller) «Random Number Generators: Good Ones Are Hard to Find».

Рис. 2. Реализация алгоритма Лемера

public class LehmerRng
{
  private const int a = 16807;
  private const int m = 2147483647;
  private const int q = 127773;
  private const int r = 2836;
  private int seed;
  public LehmerRng(int seed)
  {
    if (seed <= 0 || seed == int.MaxValue)
      throw new Exception("Bad seed");
    this.seed = seed;
  }
  public double Next()
  {
    int hi = seed / q;
    int lo = seed % q;
    seed = (a * lo) - (r * hi);
    if (seed <= 0)
      seed = seed + m;
    return (seed * 1.0) / m;
  }
}

Проблема реализации в том, чтобы предотвращать арифметическое переполнение. Алгоритм Лемера использует ловкий алгебраический трюк. Значение q является результатом m / a (целочисленное деление), а значение r равно m % a (m по модулю a).

При инициализации RNG Лемера начальным (зародышевым) значением можно использовать любое целое число в диапазоне [1, int.MaxValue – 1]. Многие RNG имеют конструктор без параметров, который получает системные дату и время, преобразует их в целое число и использует в качестве начального значения.

RNG Лемера вызывается в методе Main демонстрационной программы:

int hi = 10;
int lo = 0;
int[] counts = new int[10];
LehmerRng lehmer = new LehmerRng(1);
for (int i = 0; i < 1000; ++i) {
  double x = lehmer.Next();
  int ri = (int)((hi - lo) * x + lo); // 0 to 9
  ++counts[ri];
}

Каждый вызов метода Next возвращает значение в диапазоне [0.0, 1.0) — больше или равно 0.0 и строго меньше 1.0. Шаблон (int)(hi – lo) * Next + lo) будет возвращать целое число в диапазоне [lo, hi–1].

Алгоритм Лемера весьма эффективен, и в простых сценариях я обычно выбираю именно его. Но заметьте, что ни один алгоритм из представленных в этой статье не обладает надежностью криптографического уровня и что их следует применять только в ситуациях, где не требуется статической строгости (statistical rigor).

Алгоритм Вичмана-Хилла

Этот алгоритм датируется 1982 годом. Идея Вичмана-Хилла заключается в генерации трех предварительных результатов и последующего их объединения в один финальный результат. Код, реализующий алгоритм Вичмана-Хилла, представлен на рис. 3. Демонстрационный код основан на статье Б. А. Вичмана (B. A. Wichmann) и А. Д. Хилла (I. D. Hill) «Algorithm AS 183: An Efficient and Portable Pseudo-Random Number Generator».

Рис. 3. Реализация алгоритма Вичмана-Хилла

public WichmannRng(int seed)
{
  if (seed <= 0 || seed > 30000)
    throw new Exception("Bad seed");
  s1 = seed;
  s2 = seed + 1;
  s3 = seed + 2;
}

  public double Next()
  {
    s1 = 171 * (s1 % 177) - 2 * (s1 / 177);
    if (s1 < 0) { s1 += 30269; }
    s2 = 172 * (s2 % 176) - 35 * (s2 / 176);
    if (s2 < 0) { s2 += 30307; }
    s3 = 170 * (s3 % 178) - 63 * (s3 / 178);
    if (s3 < 0) { s3 += 30323; }
    double r = (s1 * 1.0) / 30269 + (s2 * 1.0) / 30307 + (s3 * 1.0) / 30323;
    return r - Math.Truncate(r);  // orig uses % 1.0
  }
}

Поскольку алгоритм Вичмана-Хилла использует три разных генерирующих уравнения, он требует трех начальных значений. В этом алгоритме три m-значения равны 30269, 30307 и 30323, поэтому вам понадобятся три начальных значения в диапазоне [1, 30000]. Вы могли бы написать конструктор, принимающий эти три значения, но тогда вы получили бы несколько раздражающий программный интерфейс. В демонстрации применяется параметр с одним начальным значением, генерирующим три рабочих зародыша.

Вызов RNG Вичмана-Хилла осуществляется по тому же шаблону, что и других демонстрационных RNG:

WichmannRng wich = new WichmannRng(1);
for (int i = 0; i < 1000; ++i) {
  double x = wich.Next();
  int ri = (int)((hi - lo) * x + lo); // от 0 до 9
  ++counts[ri];
}

Алгоритм Вичмана-Хилла лишь немного труднее в реализации, чем алгоритм Лемера. Преимущество первого над вторым в том, что алгоритм Вичмана-Хилла генерирует более длинную последовательность (более 6 000 000 000 000 значений) до того, как начнет повторяться.

Линейный конгруэнтный алгоритм

Оказывается, и алгоритм Лемера, и алгоритм Вичмана-Хилла можно считать особыми случаями так называемого линейного конгруэнтного алгоритма (linear congruential, LC). Выраженный в виде уравнения, LC выглядит так:

X(i) = (a * X(i-1) + c) mod m

Это точно соответствует алгоритму Лемера с добавлением дополнительной константы c. Включение c придает универсальному LC-алгоритму несколько лучшие статистические свойства по сравнению с алгоритмом Лемера. Демонстрационная реализация LC-алгоритма показана на рис. 4. Код основан на стандарте POSIX (Portable Operating System Interface).

Рис. 4. Реализация линейного конгруэнтного алгоритма

public class LinearConRng
{
  private const long a = 25214903917;
  private const long c = 11;
  private long seed;
  public LinearConRng(long seed)
  {
    if (seed < 0)
      throw new Exception("Bad seed");
    this.seed = seed;
  }
  private int next(int bits) // вспомогательный метод
  {
    seed = (seed * a + c) & ((1L << 48) - 1);
    return (int)(seed >> (48 - bits));
  }
  public double Next()
  {
    return (((long)next(26) << 27) + next(27)) / (double)(1L << 53);
  }
}

LC-алгоритм использует несколько битовых операций. Здесь идея в том, чтобы в базовых математических типах работать не с целым типом (32 бита), а с длинным целым (64 бита). По окончании 32 из этих битов (с 16-го по 47-й включительно) извлекаются и преобразуются в целое число. Этот подход дает более качественные результаты, чем при использовании просто 32 младших или старших битов, но за счет некоторого усложнения кодирования.

В демонстрации генератор случайных чисел LC вызывается так:

LinearConRng lincon = new LinearConRng(0);
for (int i = 0; i < 1000; ++i) {
  double x = lincon.Next();
  int ri = (int)((hi - lo) * x + lo); // 0 to 9
  ++counts[ri];
}

Заметьте, что в отличие от генераторов Лемера и Вичмана-Хилла генератор LC может принимать начальное значение 0. Конструктор в демонстрации LC копирует значение входного параметра seed непосредственно в член класса — поле seed. Многие распространенные реализации LC выполняют предварительные манипуляции над входным начальным значением, чтобы избежать генерации хорошо известных серий начальных значений.

Алгоритм Фибоначчи с запаздываниями

Этот алгоритм, выраженный уравнением, выглядит так:

X(i) = X(i-7) + X(i-10) mod m

Если на словах, то новое случайное число является тем, которое было сгенерировано 7 раз назад, плюс случайное число, сгенерированное 10 раз назад, и деленное по модулю на большое значение m. Значения (7, 10) можно изменять, как я вскоре поясню.

Допустим, что в некий момент времени последовательность сгенерированных чисел следующая:

... 123  072  409  660  915  358  224  707  834  561  ??

где 561 — самое последнее из сгенерированных значений. Если m = 100, то следующим случайным числом будет:

(660 + 123) % 100 = 783 % 100 = 83

Заметьте, что в любой момент вам всегда нужны 10 самых последних сгенерированных значений. Поэтому ключевая задача в алгоритме Фибоначчи с запаздываниями состоит в генерации начальных значений, необходимых для запуска процесса. Демонстрационная реализация алгоритма Фибоначчи с запаздываниями приведена на рис. 5.

Рис. 5. Реализация алгоритма Фибоначчи с запаздываниями

public class LaggedFibRng
{
  private const int k = 10; // Largest magnitude"-index"
  private const int j = 7; // Other "-index"
  private const int m = 2147483647;  // 2^31 - 1 = maxint
  private List<int> vals = null;
  private int seed;
  public LaggedFibRng(int seed)
  {
    vals = new List<int>();
    for (int i = 0; i < k + 1; ++i)
      vals.Add(seed);
    if (seed % 2 == 0) vals[0] = 11;
     // Уничтожаем некоторые значения
    for (int ct = 0; ct < 1000; ++ct) {
      double dummy = this.Next();
    }
  }  // конструктор
  public double Next()
  {
    // (a + b) mod n = [(a mod n) + (b mod n)] mod n
    int left = vals[0] % m;    // [x-big]
    int right = vals[k - j] % m; // [x-other]
    long sum = (long)left + (long)right;  // Предотвращаем переполнение
    seed = (int)(sum % m);  // Поскольку m - это int, результат имеет диапазон int
    vals.Insert(k + 1, seed);  // Добавляем новое значение в конец
    vals.RemoveAt(0);  // Удаляем теперь нерелевантное значение [0]
    return (1.0 * seed) / m;
  }
}

Демонстрационный код использует предыдущие случайные числа X(i–7) и X(i–10) для генерации следующего случайного числа. В научно-исследовательской литературе по этой тематике значения (7, 10) обычно обозначаются (j, k). Существуют другие пары (j, k), которые можно применять для алгоритма Фибоначчи с запаздываниями. Несколько значений, рекомендованных в хорошо известной книге «Art of Computer Programming» (Addison-Wesley, 1968), — (24,55), (38,89), (37,100), (30,127), (83,258), (107,378).

Чтобы инициализировать (j, k) в RNG Фибоначчи с запаздываниями, вы должны предварительно заполнить список значениями k. Это можно сделать несколькими способами. Однако наименьшее из начальных значений k обязательно должно быть нечетным. В демонстрации применяется грубый метод копирования значения параметра seed для всех начальных значений k с последующим удалением первой 1000 сгенерированных значений. Если значение параметра seed четное, тогда первое из значений k выставляется равным 11 (произвольному нечетному числу).

Чтобы предотвратить арифметическое переполнение, метод Next использует тип long для вычислений и математическое свойство: (a + b) mod n = [(a mod n) + (b mod n)] mod n.

Заключение

Позвольте мне подчеркнуть, что все четыре RNG, представленные в этой статье, предназначены только для некритичных случаев применения. С учетом этого я прогнал все RNG через набор хорошо известных базовых тестов на степень случайности, и они прошли эти тесты. Но даже при этом коварство RNG всем хорошо известно, и время от времени даже в стандартных RNG обнаруживаются дефекты, иногда лишь спустя годы их использования. Например, в 1960-х годах IBM распространяла реализацию линейного конгруэнтного алгоритма под названием RANDU, которая, как оказалось, обладала невероятно плохими качествами. А в Microsoft Excel 2008 была выявлена ужасно проблемная реализация алгоритма Вичмана-Хилла.

Нынешний фаворит в генерации случайных чисел — алгоритм Фортуна (Fortuna) (названный в честь римской богини удачи). Алгоритм Фортуна был опубликован в 2003 году и основан на математической энтропии плюс сложных шифровальных методах, таких как AES (Advanced Encryption System).


Джеймс Маккафри (Dr. James McCaffrey) — работает на Microsoft Research в Редмонде (штат Вашингтон). Принимал участие в создании нескольких продуктов Microsoft, в том числе Internet Explorer и Bing. С ним можно связаться по адресу jammc@microsoft.com.

Выражаю благодарность за рецензирование статьи экспертам Microsoft Крису Ли (Chris Lee) и Кирку Олинику (Kirk Olynyk).


Discuss this article in the MSDN Magazine forum