Поделиться через


Быстрый старт: Обнаружение именованных сущностей (NER)

Справочная документация | Больше примеров | Пакет (NuGet) | Исходный код библиотеки

В этом кратком руководстве описано, как создать приложение для Распознавания именованных сущностей (NER) с использованием клиентской библиотеки для .NET. В следующем примере показано, как создать приложение C#, которое может идентифицировать распознанные сущности в тексте.

Совет

Вы можете использовать Azure AI Foundry, чтобы делать аннотации без необходимости писать код.

Предварительные условия

Начало настройки

Создание ресурса Azure

Чтобы использовать приведенный ниже пример кода, необходимо развернуть ресурс Azure. Этот ресурс будет содержать ключ и конечную точку, которую вы будете использовать для проверки подлинности вызовов API, которые вы отправляете в языковую службу.

  1. Используйте следующую ссылку, чтобы создать языковой ресурс с помощью портал Azure. Вам потребуется войти с помощью подписки Azure.

  2. На появившемся экране выбора дополнительных функций нажмите кнопку "Продолжить", чтобы создать ресурс.

    Скриншот, показывающий дополнительные параметры функций на портале Azure.

  3. На экране "Создание языка" укажите следующие сведения:

    Подробности Описание
    Подписка Учетная запись подписки, с которым будет связан ваш ресурс. Выберите подписку Azure в раскрывающемся меню.
    Группа ресурсов Группа ресурсов — это контейнер, в который хранятся создаваемые ресурсы. Выберите Создать, чтобы создать группу ресурсов.
    Область/регион Расположение языкового ресурса. Различные регионы могут привести к задержке в зависимости от физического расположения, но не влияют на доступность ресурса во время выполнения. В этом кратком руководстве выберите доступный регион рядом с вами или выберите восточную часть США.
    Имя. Название языкового ресурса. Это имя также будет использоваться для создания URL-адреса конечной точки, который приложения будут использовать для отправки запросов API.
    Ценовая категория Ценовая категория языкового ресурса. Вы можете использовать Бесплатный F0 уровень, чтобы попробовать службу и обновить её позже до платного уровня для эксплуатации.

    Снимок экрана, показывающий сведения о создании ресурсов в Azure-портале.

  4. Убедитесь, что установлен флажок "Уведомление об ответственном ИИ".

  5. В нижней части страницы выберите Просмотреть и создать.

  6. На появившемся экране убедитесь, что проверка прошла, и правильно ввели данные. Затем выберите Создать.

Получите ваш ключ и конечную точку

Затем вам потребуется ключ и конечная точка из ресурса для подключения приложения к API. Ключ и конечную точку вы вставите в код позднее при работе с кратким руководством.

  1. После успешного развертывания ресурса языка нажмите кнопку "Перейти к ресурсу " в разделе "Дальнейшие действия".

    Снимок экрана: следующие шаги после развертывания ресурса.

  2. На экране ресурса выберите ключи и конечную точку на левой панели. Вы будете использовать один из ваших ключей и вашу конечную точку в следующих шагах.

    Снимок экрана: раздел

Создание переменной среды

Приложение должно пройти проверку подлинности для отправки запросов API. Для рабочей среды используйте безопасный способ хранения и доступа к учетным данным. В этом примере учетные данные записываются в переменные среды на локальном компьютере, на котором запущено приложение.

Чтобы задать переменную среды для ключа ресурса языка, откройте окно консоли и следуйте инструкциям в вашей операционной системе и среде разработки.

  • Чтобы задать LANGUAGE_KEY переменную среды, замените your-key одним из ключей ресурса.
  • Чтобы задать переменную среды, замените LANGUAGE_ENDPOINT на конечную точку your-endpoint вашего ресурса.

Внимание

Мы рекомендуем использовать аутентификацию Microsoft Entra ID с управляемыми удостоверениями для ресурсов Azure, чтобы избежать хранения учетных данных приложениями, работающими в облаке.

Используйте ключи API с осторожностью. Не включайте ключ API непосредственно в код и никогда не публикуйте его. При использовании ключей API безопасно храните их в Azure Key Vault, регулярно поворачивайте ключи и ограничьте доступ к Azure Key Vault с помощью управления доступом на основе ролей и ограничений доступа к сети. Дополнительные сведения об использовании ключей API безопасно в приложениях см. в разделе "Ключи API" с помощью Azure Key Vault.

Дополнительные сведения о безопасности служб ИИ см. в статье "Проверка подлинности запросов к службам ИИ Azure".

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

Примечание.

Если вам нужно получить доступ только к переменным среды в текущей работающей консоли, можно задать переменную set среды вместо setx.

После добавления переменных среды может потребоваться перезапустить все запущенные программы, которые потребуются для чтения переменных среды, включая окно консоли. Например, если вы используете Visual Studio в качестве редактора, перезапустите Visual Studio перед запуском примера.

Создание приложения .NET Core

С помощью интегрированной среды разработки Visual Studio создайте консольное приложение .NET Core. При этом создается проект Hello World с одним исходным файлом C#: program.cs.

Установите клиентскую библиотеку, щелкнув правой кнопкой мыши решение в обозревателе решений и выбрав Управление пакетами NuGet. В открывшемся диспетчере пакетов выберите Просмотр и выполните поиск по запросу Azure.AI.TextAnalytics. Выберите версию 5.2.0, а затем Установить. Вы также можете использовать консоль диспетчера пакетов.

Пример кода

Скопируйте следующий код в файл program.cs и запустите код.

using Azure;
using System;
using Azure.AI.TextAnalytics;

namespace Example
{
    class Program
    {
        // This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
        static string languageKey = Environment.GetEnvironmentVariable("LANGUAGE_KEY");
        static string languageEndpoint = Environment.GetEnvironmentVariable("LANGUAGE_ENDPOINT");

        private static readonly AzureKeyCredential credentials = new AzureKeyCredential(languageKey);
        private static readonly Uri endpoint = new Uri(languageEndpoint);
        
        // Example method for extracting named entities from text 
        static void EntityRecognitionExample(TextAnalyticsClient client)
        {
            var response = client.RecognizeEntities("I had a wonderful trip to Seattle last week.");
            Console.WriteLine("Named Entities:");
            foreach (var entity in response.Value)
            {
                Console.WriteLine($"\tText: {entity.Text},\tCategory: {entity.Category},\tSub-Category: {entity.SubCategory}");
                Console.WriteLine($"\t\tScore: {entity.ConfidenceScore:F2},\tLength: {entity.Length},\tOffset: {entity.Offset}\n");
            }
        }

        static void Main(string[] args)
        {
            var client = new TextAnalyticsClient(endpoint, credentials);
            EntityRecognitionExample(client);

            Console.Write("Press any key to exit.");
            Console.ReadKey();
        }

    }
}

Выходные данные

Named Entities:
        Text: trip,     Category: Event,        Sub-Category:
                Score: 0.74,    Length: 4,      Offset: 18

        Text: Seattle,  Category: Location,     Sub-Category: GPE
                Score: 1.00,    Length: 7,      Offset: 26

        Text: last week,        Category: DateTime,     Sub-Category: DateRange
                Score: 0.80,    Length: 9,      Offset: 34

Справочная документация | Больше примеров | Пакет (Maven) | Исходный код библиотеки

В этом кратком руководстве описано, как создать приложение для Распознавания именованных сущностей (NER) с использованием клиентской библиотеки для Java. В следующем примере показано, как создать приложение Java, которое может идентифицировать распознанные сущности в тексте.

Предварительные условия

Начало настройки

Создание ресурса Azure

Чтобы использовать приведенный ниже пример кода, необходимо развернуть ресурс Azure. Этот ресурс будет содержать ключ и конечную точку, которую вы будете использовать для проверки подлинности вызовов API, которые вы отправляете в языковую службу.

  1. Используйте следующую ссылку, чтобы создать языковой ресурс с помощью портал Azure. Вам потребуется войти с помощью подписки Azure.

  2. На появившемся экране выбора дополнительных функций нажмите кнопку "Продолжить", чтобы создать ресурс.

    Скриншот, показывающий дополнительные параметры функций на портале Azure.

  3. На экране "Создание языка" укажите следующие сведения:

    Подробности Описание
    Подписка Учетная запись подписки, с которым будет связан ваш ресурс. Выберите подписку Azure в раскрывающемся меню.
    Группа ресурсов Группа ресурсов — это контейнер, в который хранятся создаваемые ресурсы. Выберите Создать, чтобы создать группу ресурсов.
    Область/регион Расположение языкового ресурса. Различные регионы могут привести к задержке в зависимости от физического расположения, но не влияют на доступность ресурса во время выполнения. В этом кратком руководстве выберите доступный регион рядом с вами или выберите восточную часть США.
    Имя. Название языкового ресурса. Это имя также будет использоваться для создания URL-адреса конечной точки, который приложения будут использовать для отправки запросов API.
    Ценовая категория Ценовая категория языкового ресурса. Вы можете использовать Бесплатный F0 уровень, чтобы попробовать службу и обновить её позже до платного уровня для эксплуатации.

    Снимок экрана, показывающий сведения о создании ресурсов в Azure-портале.

  4. Убедитесь, что установлен флажок "Уведомление об ответственном ИИ".

  5. В нижней части страницы выберите Просмотреть и создать.

  6. На появившемся экране убедитесь, что проверка прошла, и правильно ввели данные. Затем выберите Создать.

Получите ваш ключ и конечную точку

Затем вам потребуется ключ и конечная точка из ресурса для подключения приложения к API. Ключ и конечную точку вы вставите в код позднее при работе с кратким руководством.

  1. После успешного развертывания ресурса языка нажмите кнопку "Перейти к ресурсу " в разделе "Дальнейшие действия".

    Снимок экрана: следующие шаги после развертывания ресурса.

  2. На экране ресурса выберите ключи и конечную точку на левой панели. Вы будете использовать один из ваших ключей и вашу конечную точку в следующих шагах.

    Снимок экрана: раздел

Создание переменной среды

Приложение должно пройти проверку подлинности для отправки запросов API. Для рабочей среды используйте безопасный способ хранения и доступа к учетным данным. В этом примере учетные данные записываются в переменные среды на локальном компьютере, на котором запущено приложение.

Чтобы задать переменную среды для ключа ресурса языка, откройте окно консоли и следуйте инструкциям в вашей операционной системе и среде разработки.

  • Чтобы задать LANGUAGE_KEY переменную среды, замените your-key одним из ключей ресурса.
  • Чтобы задать переменную среды, замените LANGUAGE_ENDPOINT на конечную точку your-endpoint вашего ресурса.

Внимание

Мы рекомендуем использовать аутентификацию Microsoft Entra ID с управляемыми удостоверениями для ресурсов Azure, чтобы избежать хранения учетных данных приложениями, работающими в облаке.

Используйте ключи API с осторожностью. Не включайте ключ API непосредственно в код и никогда не публикуйте его. При использовании ключей API безопасно храните их в Azure Key Vault, регулярно поворачивайте ключи и ограничьте доступ к Azure Key Vault с помощью управления доступом на основе ролей и ограничений доступа к сети. Дополнительные сведения об использовании ключей API безопасно в приложениях см. в разделе "Ключи API" с помощью Azure Key Vault.

Дополнительные сведения о безопасности служб ИИ см. в статье "Проверка подлинности запросов к службам ИИ Azure".

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

Примечание.

Если вам нужно получить доступ только к переменным среды в текущей работающей консоли, можно задать переменную set среды вместо setx.

После добавления переменных среды может потребоваться перезапустить все запущенные программы, которые потребуются для чтения переменных среды, включая окно консоли. Например, если вы используете Visual Studio в качестве редактора, перезапустите Visual Studio перед запуском примера.

Добавление клиентской библиотеки

Создайте проект Maven в предпочтительной среде разработки или IDE. Потом добавьте следующую зависимость в файл pom.xml проекта. Синтаксис реализации для других средств сборки можно найти в Интернете.

<dependencies>
     <dependency>
        <groupId>com.azure</groupId>
        <artifactId>azure-ai-textanalytics</artifactId>
        <version>5.2.0</version>
    </dependency>
</dependencies>

Пример кода

Создайте файл Java с именем Example.java. Откройте файл и скопируйте приведенный ниже код. Теперь выполните код.

import com.azure.core.credential.AzureKeyCredential;
import com.azure.ai.textanalytics.models.*;
import com.azure.ai.textanalytics.TextAnalyticsClientBuilder;
import com.azure.ai.textanalytics.TextAnalyticsClient;

public class Example {

    // This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
    private static String languageKey = System.getenv("LANGUAGE_KEY");
    private static String languageEndpoint = System.getenv("LANGUAGE_ENDPOINT");

    public static void main(String[] args) {
        TextAnalyticsClient client = authenticateClient(languageKey, languageEndpoint);
        recognizeEntitiesExample(client);
    }
    // Method to authenticate the client object with your key and endpoint
    static TextAnalyticsClient authenticateClient(String key, String endpoint) {
        return new TextAnalyticsClientBuilder()
                .credential(new AzureKeyCredential(key))
                .endpoint(endpoint)
                .buildClient();
    }
    // Example method for recognizing entities in text
    static void recognizeEntitiesExample(TextAnalyticsClient client)
    {
        // The text that needs to be analyzed.
        String text = "I had a wonderful trip to Seattle last week.";
    
        for (CategorizedEntity entity : client.recognizeEntities(text)) {
            System.out.printf(
                "Recognized entity: %s, entity category: %s, entity sub-category: %s, score: %s, offset: %s, length: %s.%n",
                entity.getText(),
                entity.getCategory(),
                entity.getSubcategory(),
                entity.getConfidenceScore(),
                entity.getOffset(),
                entity.getLength());
        }
    }
}

Выходные данные

Recognized entity: trip, entity category: Event, entity sub-category: null, score: 0.74, offset: 18, length: 4.
Recognized entity: Seattle, entity category: Location, entity sub-category: GPE, score: 1.0, offset: 26, length: 7.
Recognized entity: last week, entity category: DateTime, entity sub-category: DateRange, score: 0.8, offset: 34, length: 9.

Справочная документация | Больше примеров | Пакет (npm) | Исходный код библиотеки

В этом кратком руководстве описано, как создать приложение для Распознавания именованных сущностей (NER) с использованием клиентской библиотеки для Node.js. В следующем примере создается приложение JavaScript, которое может определять распознанные сущности в тексте.

Предварительные условия

Начало настройки

Создание ресурса Azure

Чтобы использовать приведенный ниже пример кода, необходимо развернуть ресурс Azure. Этот ресурс будет содержать ключ и конечную точку, которую вы будете использовать для проверки подлинности вызовов API, которые вы отправляете в языковую службу.

  1. Используйте следующую ссылку, чтобы создать языковой ресурс с помощью портал Azure. Вам потребуется войти с помощью подписки Azure.

  2. На появившемся экране выбора дополнительных функций нажмите кнопку "Продолжить", чтобы создать ресурс.

    Скриншот, показывающий дополнительные параметры функций на портале Azure.

  3. На экране "Создание языка" укажите следующие сведения:

    Подробности Описание
    Подписка Учетная запись подписки, с которым будет связан ваш ресурс. Выберите подписку Azure в раскрывающемся меню.
    Группа ресурсов Группа ресурсов — это контейнер, в который хранятся создаваемые ресурсы. Выберите Создать, чтобы создать группу ресурсов.
    Область/регион Расположение языкового ресурса. Различные регионы могут привести к задержке в зависимости от физического расположения, но не влияют на доступность ресурса во время выполнения. В этом кратком руководстве выберите доступный регион рядом с вами или выберите восточную часть США.
    Имя. Название языкового ресурса. Это имя также будет использоваться для создания URL-адреса конечной точки, который приложения будут использовать для отправки запросов API.
    Ценовая категория Ценовая категория языкового ресурса. Вы можете использовать Бесплатный F0 уровень, чтобы попробовать службу и обновить её позже до платного уровня для эксплуатации.

    Снимок экрана, показывающий сведения о создании ресурсов в Azure-портале.

  4. Убедитесь, что установлен флажок "Уведомление об ответственном ИИ".

  5. В нижней части страницы выберите Просмотреть и создать.

  6. На появившемся экране убедитесь, что проверка прошла, и правильно ввели данные. Затем выберите Создать.

Получите ваш ключ и конечную точку

Затем вам потребуется ключ и конечная точка из ресурса для подключения приложения к API. Ключ и конечную точку вы вставите в код позднее при работе с кратким руководством.

  1. После успешного развертывания ресурса языка нажмите кнопку "Перейти к ресурсу " в разделе "Дальнейшие действия".

    Снимок экрана: следующие шаги после развертывания ресурса.

  2. На экране ресурса выберите ключи и конечную точку на левой панели. Вы будете использовать один из ваших ключей и вашу конечную точку в следующих шагах.

    Снимок экрана: раздел

Создание переменной среды

Приложение должно пройти проверку подлинности для отправки запросов API. Для рабочей среды используйте безопасный способ хранения и доступа к учетным данным. В этом примере учетные данные записываются в переменные среды на локальном компьютере, на котором запущено приложение.

Чтобы задать переменную среды для ключа ресурса языка, откройте окно консоли и следуйте инструкциям в вашей операционной системе и среде разработки.

  • Чтобы задать LANGUAGE_KEY переменную среды, замените your-key одним из ключей ресурса.
  • Чтобы задать переменную среды, замените LANGUAGE_ENDPOINT на конечную точку your-endpoint вашего ресурса.

Внимание

Мы рекомендуем использовать аутентификацию Microsoft Entra ID с управляемыми удостоверениями для ресурсов Azure, чтобы избежать хранения учетных данных приложениями, работающими в облаке.

Используйте ключи API с осторожностью. Не включайте ключ API непосредственно в код и никогда не публикуйте его. При использовании ключей API безопасно храните их в Azure Key Vault, регулярно поворачивайте ключи и ограничьте доступ к Azure Key Vault с помощью управления доступом на основе ролей и ограничений доступа к сети. Дополнительные сведения об использовании ключей API безопасно в приложениях см. в разделе "Ключи API" с помощью Azure Key Vault.

Дополнительные сведения о безопасности служб ИИ см. в статье "Проверка подлинности запросов к службам ИИ Azure".

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

Примечание.

Если вам нужно получить доступ только к переменным среды в текущей работающей консоли, можно задать переменную set среды вместо setx.

После добавления переменных среды может потребоваться перезапустить все запущенные программы, которые потребуются для чтения переменных среды, включая окно консоли. Например, если вы используете Visual Studio в качестве редактора, перезапустите Visual Studio перед запуском примера.

Создание нового приложения Node.js

В окне консоли (например, cmd, PowerShell или Bash) создайте новый каталог для приложения и перейдите в него.

mkdir myapp 

cd myapp

Выполните команду npm init, чтобы создать приложение узла с помощью файла package.json.

npm init

Установка клиентской библиотеки

Установите пакет npm:

npm install @azure/ai-language-text

Пример кода

Откройте файл и скопируйте приведенный ниже код. Теперь выполните код.

"use strict";

const { TextAnalyticsClient, AzureKeyCredential } = require("@azure/ai-text-analytics");

// This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
const key = process.env.LANGUAGE_KEY;
const endpoint = process.env.LANGUAGE_ENDPOINT;

//an example document for entity recognition
const documents = [ "Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975, to develop and sell BASIC interpreters for the Altair 8800"];

//example of how to use the client library to recognize entities in a document.
async function main() {
    console.log("== NER sample ==");
  
    const client = new TextAnalysisClient(endpoint, new AzureKeyCredential(key));
  
    const results = await client.analyze("EntityRecognition", documents);
  
    for (const result of results) {
      console.log(`- Document ${result.id}`);
      if (!result.error) {
        console.log("\tRecognized Entities:");
        for (const entity of result.entities) {
          console.log(`\t- Entity ${entity.text} of type ${entity.category}`);
        }
      } else console.error("\tError:", result.error);
    }
  }

//call the main function
main().catch((err) => {
    console.error("The sample encountered an error:", err);
});

Выходные данные

Document ID: 0
        Name: Microsoft         Category: Organization  Subcategory: N/A
        Score: 0.29
        Name: Bill Gates        Category: Person        Subcategory: N/A
        Score: 0.78
        Name: Paul Allen        Category: Person        Subcategory: N/A
        Score: 0.82
        Name: April 4, 1975     Category: DateTime      Subcategory: Date
        Score: 0.8
        Name: 8800      Category: Quantity      Subcategory: Number
        Score: 0.8
Document ID: 1
        Name: 21        Category: Quantity      Subcategory: Number
        Score: 0.8
        Name: Seattle   Category: Location      Subcategory: GPE
        Score: 0.25

Справочная документация | Больше примеров | Пакет (PyPi) | Исходный код библиотеки

В этом кратком руководстве описано, как создать приложение для Распознавания именованных сущностей (NER) с использованием клиентской библиотеки для Python. В следующем примере вы создадите приложение Python, которое может определять распознанные сущности в тексте.

Предварительные условия

Начало настройки

Установка клиентской библиотеки

После установки Python вы можете установить клиентскую библиотеку с помощью следующей команды:

pip install azure-ai-textanalytics==5.2.0

Пример кода

Создайте файл Python и скопируйте код ниже. Теперь выполните код.

# This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
language_key = os.environ.get('LANGUAGE_KEY')
language_endpoint = os.environ.get('LANGUAGE_ENDPOINT')

from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential

# Authenticate the client using your key and endpoint 
def authenticate_client():
    ta_credential = AzureKeyCredential(language_key)
    text_analytics_client = TextAnalyticsClient(
            endpoint=language_endpoint, 
            credential=ta_credential)
    return text_analytics_client

client = authenticate_client()

# Example function for recognizing entities from text
def entity_recognition_example(client):

    try:
        documents = ["I had a wonderful trip to Seattle last week."]
        result = client.recognize_entities(documents = documents)[0]

        print("Named Entities:\n")
        for entity in result.entities:
            print("\tText: \t", entity.text, "\tCategory: \t", entity.category, "\tSubCategory: \t", entity.subcategory,
                    "\n\tConfidence Score: \t", round(entity.confidence_score, 2), "\tLength: \t", entity.length, "\tOffset: \t", entity.offset, "\n")

    except Exception as err:
        print("Encountered exception. {}".format(err))
entity_recognition_example(client)

Выходные данные

Named Entities:

    Text:    trip   Category:        Event  SubCategory:     None
    Confidence Score:        0.74   Length:          4      Offset:          18

    Text:    Seattle        Category:        Location       SubCategory:     GPE
    Confidence Score:        1.0    Length:          7      Offset:          26

    Text:    last week      Category:        DateTime       SubCategory:     DateRange
    Confidence Score:        0.8    Length:          9      Offset:          34

Справочная документация

В этом кратком руководстве описано, как отправлять запросы Распознавания именованных сущностей с использованием REST API. В следующем примере вы будете использовать cURL для идентификации распознанных сущностей в тексте.

Предварительные условия

Начало настройки

Создание ресурса Azure

Чтобы использовать приведенный ниже пример кода, необходимо развернуть ресурс Azure. Этот ресурс будет содержать ключ и конечную точку, которую вы будете использовать для проверки подлинности вызовов API, которые вы отправляете в языковую службу.

  1. Используйте следующую ссылку, чтобы создать языковой ресурс с помощью портал Azure. Вам потребуется войти с помощью подписки Azure.

  2. На появившемся экране выбора дополнительных функций нажмите кнопку "Продолжить", чтобы создать ресурс.

    Скриншот, показывающий дополнительные параметры функций на портале Azure.

  3. На экране "Создание языка" укажите следующие сведения:

    Подробности Описание
    Подписка Учетная запись подписки, с которым будет связан ваш ресурс. Выберите подписку Azure в раскрывающемся меню.
    Группа ресурсов Группа ресурсов — это контейнер, в который хранятся создаваемые ресурсы. Выберите Создать, чтобы создать группу ресурсов.
    Область/регион Расположение языкового ресурса. Различные регионы могут привести к задержке в зависимости от физического расположения, но не влияют на доступность ресурса во время выполнения. В этом кратком руководстве выберите доступный регион рядом с вами или выберите восточную часть США.
    Имя. Название языкового ресурса. Это имя также будет использоваться для создания URL-адреса конечной точки, который приложения будут использовать для отправки запросов API.
    Ценовая категория Ценовая категория языкового ресурса. Вы можете использовать Бесплатный F0 уровень, чтобы попробовать службу и обновить её позже до платного уровня для эксплуатации.

    Снимок экрана, показывающий сведения о создании ресурсов в Azure-портале.

  4. Убедитесь, что установлен флажок "Уведомление об ответственном ИИ".

  5. В нижней части страницы выберите Просмотреть и создать.

  6. На появившемся экране убедитесь, что проверка прошла, и правильно ввели данные. Затем выберите Создать.

Получите ваш ключ и конечную точку

Затем вам потребуется ключ и конечная точка из ресурса для подключения приложения к API. Ключ и конечную точку вы вставите в код позднее при работе с кратким руководством.

  1. После успешного развертывания ресурса языка нажмите кнопку "Перейти к ресурсу " в разделе "Дальнейшие действия".

    Снимок экрана: следующие шаги после развертывания ресурса.

  2. На экране ресурса выберите ключи и конечную точку на левой панели. Вы будете использовать один из ваших ключей и вашу конечную точку в следующих шагах.

    Снимок экрана: раздел

Создание переменной среды

Приложение должно пройти проверку подлинности для отправки запросов API. Для рабочей среды используйте безопасный способ хранения и доступа к учетным данным. В этом примере учетные данные записываются в переменные среды на локальном компьютере, на котором запущено приложение.

Чтобы задать переменную среды для ключа ресурса языка, откройте окно консоли и следуйте инструкциям в вашей операционной системе и среде разработки.

  • Чтобы задать LANGUAGE_KEY переменную среды, замените your-key одним из ключей ресурса.
  • Чтобы задать переменную среды, замените LANGUAGE_ENDPOINT на конечную точку your-endpoint вашего ресурса.

Внимание

Мы рекомендуем использовать аутентификацию Microsoft Entra ID с управляемыми удостоверениями для ресурсов Azure, чтобы избежать хранения учетных данных приложениями, работающими в облаке.

Используйте ключи API с осторожностью. Не включайте ключ API непосредственно в код и никогда не публикуйте его. При использовании ключей API безопасно храните их в Azure Key Vault, регулярно поворачивайте ключи и ограничьте доступ к Azure Key Vault с помощью управления доступом на основе ролей и ограничений доступа к сети. Дополнительные сведения об использовании ключей API безопасно в приложениях см. в разделе "Ключи API" с помощью Azure Key Vault.

Дополнительные сведения о безопасности служб ИИ см. в статье "Проверка подлинности запросов к службам ИИ Azure".

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

Примечание.

Если вам нужно получить доступ только к переменным среды в текущей работающей консоли, можно задать переменную set среды вместо setx.

После добавления переменных среды может потребоваться перезапустить все запущенные программы, которые потребуются для чтения переменных среды, включая окно консоли. Например, если вы используете Visual Studio в качестве редактора, перезапустите Visual Studio перед запуском примера.

Создание JSON-файла с примером текста запроса

В редакторе кода создайте файл с именем test_ner_payload.json и скопируйте следующий пример JSON. Этот пример запроса будет отправлен в API на следующем шаге.

{
    "kind": "EntityRecognition",
    "parameters": {
        "modelVersion": "latest"
    },
    "analysisInput":{
        "documents":[
            {
                "id":"1",
                "language": "en",
                "text": "I had a wonderful trip to Seattle last week."
            }
        ]
    }
}

Сохраните test_ner_payload.json где-нибудь на компьютере. Например, рабочий стол.

Отправка запроса API распознавания именованных сущностей

Используйте следующие команды, чтобы отправить запрос API с помощью используемой программы. Скопируйте команду в терминал и запустите ее.

параметр Описание
-X POST <endpoint> Указывает конечную точку для доступа к API.
-H Content-Type: application/json Тип содержимого для отправки данных JSON.
-H "Ocp-Apim-Subscription-Key:<key> Указывает ключ для доступа к API.
-d <documents> JSON с документами, которые необходимо отправить.

Замените C:\Users\<myaccount>\Desktop\test_ner_payload.json расположением примера файла запроса JSON, созданного на предыдущем шаге.

Командная строка

curl -X POST "%LANGUAGE_ENDPOINT%/language/:analyze-text?api-version=2022-05-01" ^
-H "Content-Type: application/json" ^
-H "Ocp-Apim-Subscription-Key: %LANGUAGE_KEY%" ^
-d "@C:\Users\<myaccount>\Desktop\test_ner_payload.json"

PowerShell

curl.exe -X POST $env:LANGUAGE_ENDPOINT/language/:analyze-text?api-version=2022-05-01 `
-H "Content-Type: application/json" `
-H "Ocp-Apim-Subscription-Key: $env:LANGUAGE_KEY" `
-d "@C:\Users\<myaccount>\Desktop\test_ner_payload.json"

Ответ JSON

Примечание.

{
	"kind": "EntityRecognitionResults",
	"results": {
		"documents": [{
			"id": "1",
			"entities": [{
				"text": "trip",
				"category": "Event",
				"offset": 18,
				"length": 4,
				"confidenceScore": 0.74
			}, {
				"text": "Seattle",
				"category": "Location",
				"subcategory": "GPE",
				"offset": 26,
				"length": 7,
				"confidenceScore": 1.0
			}, {
				"text": "last week",
				"category": "DateTime",
				"subcategory": "DateRange",
				"offset": 34,
				"length": 9,
				"confidenceScore": 0.8
			}],
			"warnings": []
		}],
		"errors": [],
		"modelVersion": "2021-06-01"
	}
}

Предварительные условия

На левой боковой панели выберите "Игровые площадки". Затем нажмите кнопку "Попробовать языковую площадку ".

Жизненный цикл разработки

Использование NER на детской площадке Azure AI Foundry

Языковая площадка состоит из четырех разделов:

  • Верхний баннер: вы можете выбрать любой из доступных языковых служб здесь.
  • Справа на панели: в этой области можно найти параметры конфигурации службы, такие как API и версия модели, а также функции, относящиеся к службе.
  • Центральная область: в этой области вы вводите текст для обработки. После выполнения операции здесь отображаются некоторые результаты.
  • Правая панель: в этой области отображаются сведения о запуске операции.

Здесь можно выбрать возможность распознавания именованных сущностей, выбрав верхнюю плитку баннера, извлечь именованные сущности.

Использование извлечения именованных сущностей

Извлечение именованных сущностей предназначено для идентификации именованных сущностей в тексте.

В конфигурации есть следующие параметры:

Вариант Описание
Выбор версии API Выберите используемую версию API.
Выбор версии модели Выберите версию используемой модели.
Выбор языка текста Выберите язык, на котором вводится текст.
Выбор типов для включения Выберите типы информации, которую вы хотите извлечь.
Политика совмещения Выберите политику для пересекающихся сущностей.
Параметры вывода заключений Дополнительные параметры для настройки возврата обработанных данных.

После завершения операции тип сущности отображается под каждой сущностью в центральной области, а раздел "Сведения " содержит следующие поля для каждой сущности:

Поле Описание
Объект Обнаруженная сущность.
Категория Тип обнаруженной сущности.
Смещение Число символов, обнаруженных сущностью с начала строки.
Длина Длина символа сущности.
Достоверность Насколько уверена модель в корректности идентификации типа сущности.

Снимок экрана: пример извлечения именованных сущностей на портале Azure AI Foundry.

Очистка ресурсов

Если вы хотите очистить и удалить подписку на службы искусственного интеллекта Azure, можно удалить ресурс или группу ресурсов. При удалении группы ресурсов также удаляются все связанные с ней ресурсы.

Следующие шаги