Поделиться через


Запрос MySQL с помощью Azure Databricks

В этом примере выполняется запрос MySQL с помощью драйвера JDBC. Дополнительные сведения о чтении, написании, настройке параллелизма и отправке запросов см. в разделе "Базы данных запросов" с помощью JDBC.

Внимание

Конфигурации, описанные в этой статье, являются экспериментальными. Экспериментальные функции предоставляются как есть и не поддерживаются Databricks через техническую поддержку клиентов. Чтобы получить полную поддержку федерации запросов, следует вместо этого использовать федерацию Lakehouse, которая позволяет пользователям Azure Databricks воспользоваться синтаксисом каталога Unity и средствами управления данными.

Использование JDBC

Python

driver = "com.mysql.cj.jdbc.Driver"

database_host = "<database-host-url>"
database_port = "3306" # update if you use a non-default port
database_name = "<database-name>"
table = "<table-name>"
user = "<username>"
password = "<password>"

url = f"jdbc:mysql://{database_host}:{database_port}/{database_name}"

remote_table = (spark.read
  .format("jdbc")
  .option("driver", driver)
  .option("url", url)
  .option("dbtable", table)
  .option("user", user)
  .option("password", password)
  .load()
)

Scala

val driver = "com.mysql.cj.jdbc.Driver"

val database_host = "<database-host-url>"
val database_port = "3306" # update if you use a non-default port
val database_name = "<database-name>"
val table = "<table-name>"
val user = "<username>"
val password = "<password>"

val url = s"jdbc:mysql://${database_host}:${database_port}/${database_name}"

val remote_table = spark.read
  .format("jdbc")
  .option("driver", driver)
  .option("url", url)
  .option("dbtable", table)
  .option("user", user)
  .option("password", password)
  .load()

Использование соединителя MySQL в databricks Runtime

С помощью Databricks Runtime 11.3 LTS и более поздних версий можно использовать именованный соединитель для запроса MySQL. См. следующие примеры.

Python

remote_table = (spark.read
  .format("mysql")
  .option("dbtable", "table_name")
  .option("host", "database_hostname")
  .option("port", "3306") # Optional - will use default port 3306 if not specified.
  .option("database", "database_name")
  .option("user", "username")
  .option("password", "password")
  .load()
)

SQL

DROP TABLE IF EXISTS mysql_table;
CREATE TABLE mysql_table
USING mysql
OPTIONS (
  dbtable '<table-name>',
  host '<database-host-url>',
  port '3306', /* Optional - will use default port 3306 if not specified. */
  database '<database-name>',
  user '<username>',
  password '<password>'
);
SELECT * from mysql_table;

Scala

val remote_table = spark.read
  .format("mysql")
  .option("dbtable", "table_name")
  .option("host", "database_hostname")
  .option("port", "3306") # Optional - will use default port 3306 if not specified.
  .option("database", "database_name")
  .option("user", "username")
  .option("password", "password")
  .load()