Поделиться через


array_prepend

Возвращает массив, содержащий заданный элемент в качестве первого элемента и остальные элементы из исходного массива.

Синтаксис

from pyspark.sql import functions as sf

sf.array_prepend(col, value)

Параметры

Параметр Тип Description
col pyspark.sql.Column или str Имя столбца, содержащего массив
value Любое Литеральное значение или выражение столбца.

Возвраты

pyspark.sql.Column: массив с заданным значением, предварительно заданным.

Примеры

Пример 1. Подготовка значения столбца к столбцу массива

from pyspark.sql import Row, functions as sf
df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2="c")])
df.select(sf.array_prepend(df.c1, df.c2)).show()
+---------------------+
|array_prepend(c1, c2)|
+---------------------+
|         [c, b, a, c]|
+---------------------+

Пример 2. Подготовка числового значения к столбцу массива

from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, 2, 3],)], ['data'])
df.select(sf.array_prepend(df.data, 4)).show()
+----------------------+
|array_prepend(data, 4)|
+----------------------+
|          [4, 1, 2, 3]|
+----------------------+

Пример 3. Подготовка значения NULL к столбцу массива

from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, 2, 3],)], ['data'])
df.select(sf.array_prepend(df.data, None)).show()
+-------------------------+
|array_prepend(data, NULL)|
+-------------------------+
|          [NULL, 1, 2, 3]|
+-------------------------+

Пример 4. Подготовка значения к столбцу массива NULL

from pyspark.sql import functions as sf
from pyspark.sql.types import ArrayType, IntegerType, StructType, StructField
schema = StructType([
  StructField("data", ArrayType(IntegerType()), True)
])
df = spark.createDataFrame([(None,)], schema=schema)
df.select(sf.array_prepend(df.data, 4)).show()
+----------------------+
|array_prepend(data, 4)|
+----------------------+
|                  NULL|
+----------------------+

Пример 5. Подготовка значения к пустому массиву

from pyspark.sql import functions as sf
from pyspark.sql.types import ArrayType, IntegerType, StructType, StructField
schema = StructType([
  StructField("data", ArrayType(IntegerType()), True)
])
df = spark.createDataFrame([([],)], schema=schema)
df.select(sf.array_prepend(df.data, 1)).show()
+----------------------+
|array_prepend(data, 1)|
+----------------------+
|                   [1]|
+----------------------+