Databricks Runtime 11.3 LTS для Машинное обучение
Databricks Runtime 11.3 LTS для Машинное обучение предоставляет готовую среду для машинного обучения и обработки и анализа данных на основе Databricks Runtime 11.3 LTS. Databricks Runtime ML содержит множество популярных библиотек машинного обучения, включая TensorFlow, PyTorch и XGBoost. Databricks Runtime ML включает AutoML – средство для автоматического обучения конвейеров машинного обучения. Databricks Runtime ML также поддерживает распределенное углубленное обучение с использованием Horovod.
Примечание.
LTS означает, что эта версия находится в долгосрочной поддержке. См. жизненный цикл версии LTS среды выполнения Databricks.
Дополнительные сведения, включая инструкции по созданию кластера Databricks Runtime ML, см. в статье ИИ и машинное обучение в Databricks.
Совет
Сведения о выпуске заметок о выпуске Databricks Runtime, которые достигли окончания поддержки (EoS), см . в заметках о выпуске Databricks Runtime. Версии среды выполнения EoS Databricks устарели и могут не обновляться.
Новые функции и внесенные улучшения
Databricks Runtime 11.3 LTS ML построен на основе Databricks Runtime 11.3 LTS. Сведения о новых возможностях Databricks Runtime 11.3 LTS, включая Apache Spark MLlib и SparkR, см . в заметках о выпуске Databricks Runtime 11.3 LTS .
Усовершенствования в Мозаичной autoML
В экспериментах AutoML для AutoML теперь поддерживается использование существующих таблиц функций Хранилища компонентов в экспериментах AutoML . Дополнительные сведения см. в разделе интеграции с Хранилищем компонентов.
Пробные записные книжки, созданные AutoML, теперь содержат фрагменты кода, позволяющие пользователям повторно запускать настройку гиперпараметров.
AutoML теперь поддерживает DecimalType
функции.
Исправления ошибок
Databricks Runtime 11.3 LTS ML включает обновленную версию sparkdl.xgboost
. Предыдущие версии sparkdl.xgboost
содержат ошибки, исправленные в этом выпуске, поэтому Databricks рекомендует пользователям библиотеки обновиться до Databricks Runtime 11.3 LTS ML.
Подготовка к будущим выпускам
Предстоящий выпуск Databricks Runtime ML будет включать sklearn
версию 1.0. Ознакомьтесь с документацией по подготовке sklearn
к этому изменению.
Databricks Runtime ML содержит два openblas
пакета. Пакет /opt/OpenBLAS
устарел в Databricks Runtime 11.3 LTS ML и будет удален в предстоящем выпуске.
Системная среда
Системная среда в Databricks Runtime 11.3 LTS ML отличается от Databricks Runtime 11.3 LTS следующим образом:
- DBUtils: Databricks Runtime ML не включает служебную программу библиотеки (dbutils.library) (устаревшая версия).
Вместо нее используйте команды
%pip
. См. статью Библиотеки Python с областью действия записной книжки. - Для кластеров GPU машинное обучение Databricks Runtime включает следующие библиотеки GPU NVIDIA:
- CUDA 11.3
- cuDNN 8.0.5.39
- NCCL 2.9.9
- TensorRT 7.2.2
Databricks Runtime 11.3 LTS ML включает XGBoost 1.6.1, который не поддерживает кластеры GPU с возможностями вычислений 5.2 и ниже.
Библиотеки
В следующих разделах перечислены библиотеки, включенные в Databricks Runtime 11.3 LTS ML, которые отличаются от библиотек, включенных в Databricks Runtime 11.3 LTS.
В этом разделе рассматриваются следующие вопросы.
- Библиотеки верхнего уровня
- Библиотеки Python
- Библиотеки R
- Библиотеки Java и Scala (кластер Scala 2.12)
Библиотеки верхнего уровня
Databricks Runtime 11.3 LTS ML включает следующие библиотеки верхнего уровня:
- GraphFrames
- Horovod и HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
- Scikit-learn
Библиотеки Python
Databricks Runtime 11.3 LTS ML использует Virtualenv для управления пакетами Python и включает множество популярных пакетов машинного обучения.
Помимо пакетов, указанных в следующих разделах, Databricks Runtime 11.3 LTS ML также включает следующие пакеты:
- hyperopt 0.2.7.db1
- sparkdl 2.3.0-db3
- feature_store 0.7.0
- automl 1.13.2
Чтобы воспроизвести среду Python среды выполнения Databricks в локальной виртуальной среде Python, скачайте файл requirements-11.3.txt и запустите pip install -r requirements-11.3.txt
его. Эта команда устанавливает все библиотеки открытый код, которые использует Databricks Runtime ML, но не устанавливает библиотеки, разработанные Databricks, например databricks-automl
databricks-feature-store
, или вилку hyperopt
Databricks.
Библиотеки Python в кластерах CPU
Библиотека | Версия | Библиотека | Версия | Библиотека | Версия |
---|---|---|---|---|---|
absl-py | 1.0.0 | argon2-cffi | 20.1.0 | astor | 0.8.1 |
astunparse | 1.6.3 | async-generator | 1,10 | attrs | 21.2.0 |
azure-core | 1.22.1 | azure-cosmos | 4.2.0 | backcall | 0.2.0 |
backports.entry-points-selectable | 1.1.1 | bcrypt | 4.0.0 | black | 22.3.0 |
bleach | 4.0.0 | blis | 0.7.8 | boto3 | 1.21.18 |
botocore | 1.24.18 | cachetools | 5.2.0 | catalogue | 2.0.8 |
certifi | 2021.10.8 | cffi | 1.14.6 | chardet | 4.0.0 |
charset-normalizer | 2.0.4 | щелчок | 8.0.3 | cloudpickle | 2.0.0 |
cmdstanpy | 0.9.68 | сласти | 0.0.1 | configparser | 5.2.0 |
convertdate | 2.4.0 | криптография | 3.4.8 | cycler | 0.10.0 |
cymem | 2.0.6 | Cython | 0.29.24 | databricks-automl-runtime | 0.2.11 |
databricks-cli | 0.17.3 | dbl-tempo | 0.1.12 | dbus-python | 1.2.16 |
debugpy | 1.4.1 | decorator | 5.1.0 | defusedxml | 0.7.1 |
dill | 0.3.4 | diskcache | 5.4.0 | distlib | 0.3.6 |
entrypoints | 0,3 | ephem | 4.1.3 | facets-overview | 1.0.0 |
fasttext | 0.9.2 | filelock | 3.3.1 | Flask | 1.1.2 |
flatbuffers | 1.12 | fsspec | 2021.8.1 | будущее | 0.18.2 |
gast | 0.4.0 | gitdb | 4.0.9 | GitPython | 3.1.27 |
google-auth | 2.6.0 | google-auth-oauthlib | 0.4.6 | google-pasta | 0.2.0 |
grpcio | 1.44.0 | gunicorn | 20.1.0 | gviz-api | 1.10.0 |
h5py | 3.3.0 | hijri-converter | 2.2.4 | holidays | 0,15 |
horovod | 0.25.0 | htmlmin | 0.1.12 | huggingface-hub | 0.9.1 |
idna | 3.2 | ImageHash | 4.3.0 | imbalanced-learn | 0.8.1 |
importlib-metadata | 4.8.1 | ipykernel | 6.12.1 | ipython | 7.32.0 |
ipython-genutils | 0.2.0 | ipywidgets | 7.7.0 | isodate | 0.6.1 |
itsdangerous | 2.0.1 | jedi | 0.18.0 | Jinja2 | 2.11.3 |
jmespath | 0.10.0 | joblib | 1.0.1 | joblibspark | 0.5.0 |
jsonschema | 3.2.0 | jupyter-client | 6.1.12 | jupyter-core | 4.8.1 |
jupyterlab-pygments | 0.1.2 | jupyterlab-widgets | 1.0.0 | keras | 2.9.0 |
Keras-Preprocessing | 1.1.2 | kiwisolver | 1.3.1 | korean-lunar-calendar | 0.3.1 |
langcodes | 3.3.0 | libclang | 14.0.6 | lightgbm; | 3.3.2 |
llvmlite | 0.37.0 | LunarCalendar | 0.0.9 | Mako | 1.2.0 |
Markdown | 3.3.6 | MarkupSafe | 2.0.1 | matplotlib | 3.4.3 |
matplotlib-inline | 0.1.2 | missingno | 0.5.1 | mistune | 0.8.4 |
mleap | 0.20.0 | mlflow-skinny | 1.29.0 | multimethod | 1,9 |
murmurhash | 1.0.8 | mypy-extensions | 0.4.3 | nbclient | 0.5.3 |
nbconvert | 6.1.0 | nbformat | 5.1.3 | nest-asyncio | 1.5.1 |
networkx | 2.6.3 | nltk | 3.6.5 | записная книжка | 6.4.5 |
numba | 0.54.1 | numpy | 1.20.3 | oauthlib | 3.2.0 |
opt-einsum | 3.3.0 | во внешнем виде | 21,0 | pandas | 1.3.4 |
pandas-profiling | 3.1.0 | pandocfilters | 1.4.3 | paramiko | 2.9.2 |
parso | 0.8.2 | pathspec | 0.9.0 | pathy | 0.6.2 |
patsy | 0.5.2 | petastorm | 0.11.4 | pexpect | 4.8.0 |
phik | 0.12.2 | pickleshare | 0.7.5 | Pillow | 8.4.0 |
pip | 21.2.4 | platformdirs | 2.5.2 | график | 5.9.0 |
pmdarima | 1.8.5 | preshed | 3.0.7 | prometheus-client | 0.11.0 |
prompt-toolkit | 3.0.20 | пророк | 1.0.1 | protobuf | 3.19.4 |
psutil | 5.8.0 | psycopg2 | 2.9.3 | ptyprocess | 0.7.0 |
pyarrow | 7.0.0 | pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 |
pybind11 | 2.10.0 | pycparser | 2,20 | pydantic | 1.9.2 |
Pygments | 2.10.0 | PyGObject | 3.36.0 | PyJWT | 2.5.0 |
PyMeeus | 0.5.11 | PyNaCl | 1.5.0 | pyodbc | 4.0.31 |
pyparsing | 3.0.4 | pyrsistent | 0.18.0 | pystan | 2.19.1.1 |
python-dateutil | 2.8.2 | python-editor | 1.0.4 | pytz | 2021.3 |
PyWavelets | 1.1.1 | PyYAML | 6,0 | pyzmq | 22.2.1 |
regex | 2021.8.3 | requests | 2.26.0 | requests-oauthlib | 1.3.1 |
requests-unixsocket | 0.2.0 | rsa | 4,9 | s3transfer | 0.5.2 |
scikit-learn | 0.24.2 | scipy | 1.7.1 | мореборн | 0.11.3 |
Send2Trash | 1.8.0 | setuptools | 58.0.4 | setuptools-git | 1.2 |
shap | 0.41.0 | simplejson | 3.17.6 | six | 1.16.0 |
Среза | 0.0.7 | smart-open | 5.2.1 | smmap | 5.0.0 |
spacy | 3.4.1 | spacy-legacy | 3.0.10 | spacy-loggers | 1.0.3 |
spark-tensorflow-distributor | 1.0.0 | sqlparse | 0.4.2 | srsly | 2.4.4 |
ssh-import-id | 5,10 | statsmodels | 0.12.2 | tabulate | 0.8.9 |
tangled-up-in-unicode | 0.1.0 | tenacity | 8.0.1 | tensorboard | 2.9.1 |
tensorboard-data-server | 0.6.1 | tensorboard-plugin-profile | 2.8.0 | tensorboard-plugin-wit | 1.8.1 |
tensorflow-cpu | 2.9.1 | tensorflow-estimator | 2.9.0 | tensorflow-io-gcs-filesystem | 0.27.0 |
termcolor | 2.0.1 | terminado | 0.9.4 | testpath | 0.5.0 |
thinc | 8.1.2 | threadpoolctl | 2.2.0 | tokenize-rt | 4.2.1 |
токенизаторы | 0.12.1 | tomli | 2.0.1 | torch | 1.12.1+цп |
torchvision | 0.13.1+цп | tornado | 6.1 | tqdm | 4.62.3 |
traitlets | 5.1.0 | Трансформаторы | 4.21.2 | typer | 0.4.2 |
typing-extensions | 3.10.0.2 | ujson | 4.0.2 | unattended-upgrades | 0,1 |
urllib3 | 1.26.7 | virtualenv | 20.8.0 | visions | 0.7.4 |
wasabi | 0.10.1 | wcwidth | 0.2.5 | webencodings | 0.5.1 |
websocket-client | 1.3.1 | Werkzeug | 2.0.2 | wheel | 0.37.0 |
widgetsnbextension | 3.6.0 | wrapt | 1.12.1 | XGBoost | 1.6.2 |
zipp | 3.6.0 |
Библиотеки Python в кластерах GPU
Библиотека | Версия | Библиотека | Версия | Библиотека | Версия |
---|---|---|---|---|---|
absl-py | 1.0.0 | argon2-cffi | 20.1.0 | astor | 0.8.1 |
astunparse | 1.6.3 | async-generator | 1,10 | attrs | 21.2.0 |
azure-core | 1.22.1 | azure-cosmos | 4.2.0 | backcall | 0.2.0 |
backports.entry-points-selectable | 1.1.1 | bcrypt | 4.0.0 | black | 22.3.0 |
bleach | 4.0.0 | blis | 0.7.8 | boto3 | 1.21.18 |
botocore | 1.24.18 | cachetools | 5.2.0 | catalogue | 2.0.8 |
certifi | 2021.10.8 | cffi | 1.14.6 | chardet | 4.0.0 |
charset-normalizer | 2.0.4 | щелчок | 8.0.3 | cloudpickle | 2.0.0 |
cmdstanpy | 0.9.68 | сласти | 0.0.1 | configparser | 5.2.0 |
convertdate | 2.4.0 | криптография | 3.4.8 | cycler | 0.10.0 |
cymem | 2.0.6 | Cython | 0.29.24 | databricks-automl-runtime | 0.2.11 |
databricks-cli | 0.17.3 | dbl-tempo | 0.1.12 | dbus-python | 1.2.16 |
debugpy | 1.4.1 | decorator | 5.1.0 | defusedxml | 0.7.1 |
dill | 0.3.4 | diskcache | 5.4.0 | distlib | 0.3.6 |
entrypoints | 0,3 | ephem | 4.1.3 | facets-overview | 1.0.0 |
fasttext | 0.9.2 | filelock | 3.3.1 | Flask | 1.1.2 |
flatbuffers | 1.12 | fsspec | 2021.8.1 | будущее | 0.18.2 |
gast | 0.4.0 | gitdb | 4.0.9 | GitPython | 3.1.27 |
google-auth | 2.6.0 | google-auth-oauthlib | 0.4.6 | google-pasta | 0.2.0 |
grpcio | 1.44.0 | gunicorn | 20.1.0 | gviz-api | 1.10.0 |
h5py | 3.3.0 | hijri-converter | 2.2.4 | holidays | 0,15 |
horovod | 0.25.0 | htmlmin | 0.1.12 | huggingface-hub | 0.9.1 |
idna | 3.2 | ImageHash | 4.3.0 | imbalanced-learn | 0.8.1 |
importlib-metadata | 4.8.1 | ipykernel | 6.12.1 | ipython | 7.32.0 |
ipython-genutils | 0.2.0 | ipywidgets | 7.7.0 | isodate | 0.6.1 |
itsdangerous | 2.0.1 | jedi | 0.18.0 | Jinja2 | 2.11.3 |
jmespath | 0.10.0 | joblib | 1.0.1 | joblibspark | 0.5.0 |
jsonschema | 3.2.0 | jupyter-client | 6.1.12 | jupyter-core | 4.8.1 |
jupyterlab-pygments | 0.1.2 | jupyterlab-widgets | 1.0.0 | keras | 2.9.0 |
Keras-Preprocessing | 1.1.2 | kiwisolver | 1.3.1 | korean-lunar-calendar | 0.3.1 |
langcodes | 3.3.0 | libclang | 14.0.6 | lightgbm; | 3.3.2 |
llvmlite | 0.37.0 | LunarCalendar | 0.0.9 | Mako | 1.2.0 |
Markdown | 3.3.6 | MarkupSafe | 2.0.1 | matplotlib | 3.4.3 |
matplotlib-inline | 0.1.2 | missingno | 0.5.1 | mistune | 0.8.4 |
mleap | 0.20.0 | mlflow-skinny | 1.29.0 | multimethod | 1,9 |
murmurhash | 1.0.8 | mypy-extensions | 0.4.3 | nbclient | 0.5.3 |
nbconvert | 6.1.0 | nbformat | 5.1.3 | nest-asyncio | 1.5.1 |
networkx | 2.6.3 | nltk | 3.6.5 | записная книжка | 6.4.5 |
numba | 0.54.1 | numpy | 1.20.3 | oauthlib | 3.2.0 |
opt-einsum | 3.3.0 | во внешнем виде | 21,0 | pandas | 1.3.4 |
pandas-profiling | 3.1.0 | pandocfilters | 1.4.3 | paramiko | 2.9.2 |
parso | 0.8.2 | pathspec | 0.9.0 | pathy | 0.6.2 |
patsy | 0.5.2 | petastorm | 0.11.4 | pexpect | 4.8.0 |
phik | 0.12.2 | pickleshare | 0.7.5 | Pillow | 8.4.0 |
pip | 21.2.4 | platformdirs | 2.5.2 | график | 5.9.0 |
pmdarima | 1.8.5 | preshed | 3.0.7 | prompt-toolkit | 3.0.20 |
пророк | 1.0.1 | protobuf | 3.19.4 | psutil | 5.8.0 |
psycopg2 | 2.9.3 | ptyprocess | 0.7.0 | pyarrow | 7.0.0 |
pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 | pybind11 | 2.10.0 |
pycparser | 2,20 | pydantic | 1.9.2 | Pygments | 2.10.0 |
PyGObject | 3.36.0 | PyJWT | 2.5.0 | PyMeeus | 0.5.11 |
PyNaCl | 1.5.0 | pyodbc | 4.0.31 | pyparsing | 3.0.4 |
pyrsistent | 0.18.0 | pystan | 2.19.1.1 | python-dateutil | 2.8.2 |
python-editor | 1.0.4 | pytz | 2021.3 | PyWavelets | 1.1.1 |
PyYAML | 6,0 | pyzmq | 22.2.1 | regex | 2021.8.3 |
requests | 2.26.0 | requests-oauthlib | 1.3.1 | requests-unixsocket | 0.2.0 |
rsa | 4,9 | s3transfer | 0.5.2 | scikit-learn | 0.24.2 |
scipy | 1.7.1 | мореборн | 0.11.3 | Send2Trash | 1.8.0 |
setuptools | 58.0.4 | setuptools-git | 1.2 | shap | 0.41.0 |
simplejson | 3.17.6 | six | 1.16.0 | Среза | 0.0.7 |
smart-open | 5.2.1 | smmap | 5.0.0 | spacy | 3.4.1 |
spacy-legacy | 3.0.10 | spacy-loggers | 1.0.3 | spark-tensorflow-distributor | 1.0.0 |
sqlparse | 0.4.2 | srsly | 2.4.4 | ssh-import-id | 5,10 |
statsmodels | 0.12.2 | tabulate | 0.8.9 | tangled-up-in-unicode | 0.1.0 |
tenacity | 8.0.1 | tensorboard | 2.9.1 | tensorboard-data-server | 0.6.1 |
tensorboard-plugin-profile | 2.8.0 | tensorboard-plugin-wit | 1.8.1 | tensorflow | 2.9.1 |
tensorflow-estimator | 2.9.0 | tensorflow-io-gcs-filesystem | 0.27.0 | termcolor | 2.0.1 |
terminado | 0.9.4 | testpath | 0.5.0 | thinc | 8.1.2 |
threadpoolctl | 2.2.0 | tokenize-rt | 4.2.1 | токенизаторы | 0.12.1 |
tomli | 2.0.1 | torch | 1.12.1+cu113 | torchvision | 0.13.1+cu113 |
tornado | 6.1 | tqdm | 4.62.3 | traitlets | 5.1.0 |
Трансформаторы | 4.21.2 | typer | 0.4.2 | typing-extensions | 3.10.0.2 |
ujson | 4.0.2 | unattended-upgrades | 0,1 | urllib3 | 1.26.7 |
virtualenv | 20.8.0 | visions | 0.7.4 | wasabi | 0.10.1 |
wcwidth | 0.2.5 | webencodings | 0.5.1 | websocket-client | 1.3.1 |
Werkzeug | 2.0.2 | wheel | 0.37.0 | widgetsnbextension | 3.6.0 |
wrapt | 1.12.1 | XGBoost | 1.6.2 | zipp | 3.6.0 |
Библиотеки R
Библиотеки R идентичны библиотекам R в Databricks Runtime 11.3 LTS.
Библиотеки Java и Scala (кластер Scala 2.12)
Помимо библиотек Java и Scala в Databricks Runtime 11.3 LTS, Databricks Runtime 11.3 LTS содержит следующие JAR:
Кластеры ЦП
ИД группы | Идентификатор артефакта | Версия |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | v0.20.0-db1 |
ml.dmlc | xgboost4j-spark_2.12 | 1.6.2 |
ml.dmlc | xgboost4j_2.12 | 1.6.2 |
org.graphframes | graphframes_2.12 | 0.8.2-db1-spark3.2 |
org.mlflow | mlflow-client | 1.29.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |
Кластеры GPU
ИД группы | Идентификатор артефакта | Версия |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | v0.20.0-db1 |
ml.dmlc | xgboost4j-gpu_2.12 | 1.6.2 |
ml.dmlc | xgboost4j-spark-gpu_2.12 | 1.6.2 |
org.graphframes | graphframes_2.12 | 0.8.2-db1-spark3.2 |
org.mlflow | mlflow-client | 1.29.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |