Поделиться через


Обновление управления хранилищем данных до пакета SDK версии 2

Машинное обучение Azure хранилища данных безопасно сохраняют сведения о подключении к хранилищу данных в Azure, поэтому вам не нужно кодировать их в скриптах. Концепция хранилища данных версии 2 остается в основном неизменной по сравнению с версией 1. Разница заключается в том, что мы не будем поддерживать такие источники данных, как SQL, через Машинное обучение Azure хранилища данных. Мы будем поддерживать такие источники данных SQL, как Машинное обучение Azure функции импорта и экспорта данных.

В этой статье приводится сравнение сценариев в пакете SDK версии 1 и пакете SDK версии 2.

Создание хранилища данных из контейнера BLOB-объектов Azure с помощью account_key

  • Пакет SDK версии 1

    blob_datastore_name='azblobsdk' # Name of the datastore to workspace
    container_name=os.getenv("BLOB_CONTAINER", "<my-container-name>") # Name of Azure blob container
    account_name=os.getenv("BLOB_ACCOUNTNAME", "<my-account-name>") # Storage account name
    account_key=os.getenv("BLOB_ACCOUNT_KEY", "<my-account-key>") # Storage account access key
    
    blob_datastore = Datastore.register_azure_blob_container(workspace=ws, 
                                                             datastore_name=blob_datastore_name, 
                                                             container_name=container_name, 
                                                             account_name=account_name,
                                                             account_key=account_key)
    
  • Пакет SDK версии 2

    from azure.ai.ml.entities import AzureBlobDatastore
    from azure.ai.ml import MLClient
    
    ml_client = MLClient.from_config()
    
    store = AzureBlobDatastore(
        name="blob-protocol-example",
        description="Datastore pointing to a blob container using wasbs protocol.",
        account_name="mytestblobstore",
        container_name="data-container",
        protocol="wasbs",
        credentials={
            "account_key": "XXXxxxXXXxXXXXxxXXXXXxXXXXXxXxxXxXXXxXXXxXXxxxXXxxXXXxXxXXXxxXxxXXXXxxxxxXXxxxxxxXXXxXXX"
        },
    )
    
    ml_client.create_or_update(store)
    

Создание хранилища данных из контейнера BLOB-объектов Azure с помощью sas_token

  • Пакет SDK версии 1

    blob_datastore_name='azblobsdk' # Name of the datastore to workspace
    container_name=os.getenv("BLOB_CONTAINER", "<my-container-name>") # Name of Azure blob container
    sas_token=os.getenv("BLOB_SAS_TOKEN", "<my-sas-token>") # Sas token
    
    blob_datastore = Datastore.register_azure_blob_container(workspace=ws, 
                                                             datastore_name=blob_datastore_name, 
                                                             container_name=container_name, 
                                                             sas_token=sas_token)
    
  • Пакет SDK версии 2

    from azure.ai.ml.entities import AzureBlobDatastore
    from azure.ai.ml import MLClient
    
    ml_client = MLClient.from_config()
    
    store = AzureBlobDatastore(
        name="blob-sas-example",
        description="Datastore pointing to a blob container using SAS token.",
        account_name="mytestblobstore",
        container_name="data-container",
        credentials=SasTokenCredentials(
            sas_token= "?xx=XXXX-XX-XX&xx=xxxx&xxx=xxx&xx=xxxxxxxxxxx&xx=XXXX-XX-XXXXX:XX:XXX&xx=XXXX-XX-XXXXX:XX:XXX&xxx=xxxxx&xxx=XXxXXXxxxxxXXXXXXXxXxxxXXXXXxxXXXXXxXXXXxXXXxXXxXX"
        ),
    )
    
    ml_client.create_or_update(store)
    

Создание хранилища данных из контейнера BLOB-объектов Azure с помощью проверки подлинности на основе удостоверений

  • Пакет SDK версии 1
blob_datastore = Datastore.register_azure_blob_container(workspace=ws,
                                                      datastore_name='credentialless_blob',
                                                      container_name='my_container_name',
                                                      account_name='my_account_name')

  • Пакет SDK версии 2

    from azure.ai.ml.entities import AzureBlobDatastore
    from azure.ai.ml import MLClient
    
    ml_client = MLClient.from_config()
    
    store = AzureBlobDatastore(
        name="",
        description="",
        account_name="",
        container_name=""
    )
    
    ml_client.create_or_update(store)
    

Получение хранилищ данных из рабочей области

  • Пакет SDK версии 1

    # Get a named datastore from the current workspace
    datastore = Datastore.get(ws, datastore_name='your datastore name')
    
    # List all datastores registered in the current workspace
    datastores = ws.datastores
    for name, datastore in datastores.items():
        print(name, datastore.datastore_type)
    
  • Пакет SDK версии 2

    from azure.ai.ml import MLClient
    from azure.identity import DefaultAzureCredential
    
    #Enter details of your Azure Machine Learning workspace
    subscription_id = '<SUBSCRIPTION_ID>'
    resource_group = '<RESOURCE_GROUP>'
    workspace_name = '<AZUREML_WORKSPACE_NAME>'
    
    ml_client = MLClient(credential=DefaultAzureCredential(),
                         subscription_id=subscription_id, 
                         resource_group_name=resource_group)
    
    datastore = ml_client.datastores.get(name='your datastore name')
    

Сопоставление ключевых функций в пакете SDK версии 1 и пакете SDK версии 2

Типы хранилища в пакете SDK версии 1 Типы хранилища в пакете SDK версии 2
azureml_blob_datastore azureml_blob_datastore
azureml_data_lake_gen1_datastore azureml_data_lake_gen1_datastore
azureml_data_lake_gen2_datastore azureml_data_lake_gen2_datastore
azuremlml_sql_database_datastore Будет поддерживаться с помощью функций импорта и экспорта
azuremlml_my_sql_datastore Будет поддерживаться с помощью функций импорта и экспорта
azuremlml_postgre_sql_datastore Будет поддерживаться с помощью функций импорта и экспорта

Дальнейшие действия

Дополнительные сведения см. в разделе: