GenericTypeParameterBuilder.SetGenericParameterAttributes Метод
Определение
Важно!
Некоторые сведения относятся к предварительной версии продукта, в которую до выпуска могут быть внесены существенные изменения. Майкрософт не предоставляет никаких гарантий, явных или подразумеваемых, относительно приведенных здесь сведений.
Задает характеристики расхождения и особые ограничения универсального параметра, например ограничение конструктора без параметров.
public:
void SetGenericParameterAttributes(System::Reflection::GenericParameterAttributes genericParameterAttributes);
public void SetGenericParameterAttributes (System.Reflection.GenericParameterAttributes genericParameterAttributes);
member this.SetGenericParameterAttributes : System.Reflection.GenericParameterAttributes -> unit
Public Sub SetGenericParameterAttributes (genericParameterAttributes As GenericParameterAttributes)
Параметры
- genericParameterAttributes
- GenericParameterAttributes
Побитовое сочетание значений GenericParameterAttributes, представляющих характеристики расхождения и особые ограничения параметра универсального типа.
Примеры
В следующем примере кода создается универсальный тип с двумя параметрами типа, первый из которых ограничен конструктором без параметров и ссылочным типом, и сохраняет их в сборке GenericEmitExample1.dll. Для просмотра созданных типов можно использовать Ildasm.exe (дизассемблер IL ). Более подробное описание шагов, связанных с определением динамического универсального типа, см. в разделе How to: Define a Generic Type with Reflection Emit.
using namespace System;
using namespace System::Reflection;
using namespace System::Reflection::Emit;
using namespace System::Collections::Generic;
// Dummy class to satisfy TFirst constraints.
//
public ref class Example {};
// Define a trivial base class and two trivial interfaces
// to use when demonstrating constraints.
//
public ref class ExampleBase {};
public interface class IExampleA {};
public interface class IExampleB {};
// Define a trivial type that can substitute for type parameter
// TSecond.
//
public ref class ExampleDerived : ExampleBase, IExampleA, IExampleB {};
// List the constraint flags. The GenericParameterAttributes
// enumeration contains two sets of attributes, variance and
// constraints. For this example, only constraints are used.
//
static void ListConstraintAttributes( Type^ t )
{
// Mask off the constraint flags.
GenericParameterAttributes constraints =
t->GenericParameterAttributes &
GenericParameterAttributes::SpecialConstraintMask;
if ((constraints & GenericParameterAttributes::ReferenceTypeConstraint)
!= GenericParameterAttributes::None)
Console::WriteLine( L" ReferenceTypeConstraint");
if ((constraints & GenericParameterAttributes::NotNullableValueTypeConstraint)
!= GenericParameterAttributes::None)
Console::WriteLine( L" NotNullableValueTypeConstraint");
if ((constraints & GenericParameterAttributes::DefaultConstructorConstraint)
!= GenericParameterAttributes::None)
Console::WriteLine( L" DefaultConstructorConstraint");
}
static void DisplayGenericParameters( Type^ t )
{
if (!t->IsGenericType)
{
Console::WriteLine( L"Type '{0}' is not generic." );
return;
}
if (!t->IsGenericTypeDefinition)
t = t->GetGenericTypeDefinition();
array<Type^>^ typeParameters = t->GetGenericArguments();
Console::WriteLine( L"\r\nListing {0} type parameters for type '{1}'.",
typeParameters->Length, t );
for each ( Type^ tParam in typeParameters )
{
Console::WriteLine( L"\r\nType parameter {0}:",
tParam->ToString() );
for each (Type^ c in tParam->GetGenericParameterConstraints())
{
if (c->IsInterface)
Console::WriteLine( L" Interface constraint: {0}", c);
else
Console::WriteLine( L" Base type constraint: {0}", c);
}
ListConstraintAttributes(tParam);
}
}
void main()
{
// Define a dynamic assembly to contain the sample type. The
// assembly will be run and also saved to disk, so
// AssemblyBuilderAccess.RunAndSave is specified.
//
AppDomain^ myDomain = AppDomain::CurrentDomain;
AssemblyName^ myAsmName = gcnew AssemblyName( L"GenericEmitExample1" );
AssemblyBuilder^ myAssembly = myDomain->DefineDynamicAssembly(
myAsmName, AssemblyBuilderAccess::RunAndSave );
// An assembly is made up of executable modules. For a single-
// module assembly, the module name and file name are the same
// as the assembly name.
//
ModuleBuilder^ myModule = myAssembly->DefineDynamicModule(
myAsmName->Name, String::Concat( myAsmName->Name, L".dll" ) );
// Get type objects for the base class trivial interfaces to
// be used as constraints.
//
Type^ baseType = ExampleBase::typeid;
Type^ interfaceA = IExampleA::typeid;
Type^ interfaceB = IExampleB::typeid;
// Define the sample type.
//
TypeBuilder^ myType = myModule->DefineType( L"Sample",
TypeAttributes::Public );
Console::WriteLine( L"Type 'Sample' is generic: {0}",
myType->IsGenericType );
// Define type parameters for the type. Until you do this,
// the type is not generic, as the preceding and following
// WriteLine statements show. The type parameter names are
// specified as an array of strings. To make the code
// easier to read, each GenericTypeParameterBuilder is placed
// in a variable with the same name as the type parameter.
//
array<String^>^typeParamNames = {L"TFirst",L"TSecond"};
array<GenericTypeParameterBuilder^>^typeParams =
myType->DefineGenericParameters( typeParamNames );
GenericTypeParameterBuilder^ TFirst = typeParams[0];
GenericTypeParameterBuilder^ TSecond = typeParams[1];
Console::WriteLine( L"Type 'Sample' is generic: {0}",
myType->IsGenericType );
// Apply constraints to the type parameters.
//
// A type that is substituted for the first parameter, TFirst,
// must be a reference type and must have a parameterless
// constructor.
TFirst->SetGenericParameterAttributes(
GenericParameterAttributes::DefaultConstructorConstraint |
GenericParameterAttributes::ReferenceTypeConstraint
);
// A type that is substituted for the second type
// parameter must implement IExampleA and IExampleB, and
// inherit from the trivial test class ExampleBase. The
// interface constraints are specified as an array
// containing the interface types.
array<Type^>^interfaceTypes = { interfaceA, interfaceB };
TSecond->SetInterfaceConstraints( interfaceTypes );
TSecond->SetBaseTypeConstraint( baseType );
// The following code adds a private field named ExampleField,
// of type TFirst.
FieldBuilder^ exField =
myType->DefineField("ExampleField", TFirst,
FieldAttributes::Private);
// Define a static method that takes an array of TFirst and
// returns a List<TFirst> containing all the elements of
// the array. To define this method it is necessary to create
// the type List<TFirst> by calling MakeGenericType on the
// generic type definition, generic<T> List.
// The parameter type is created by using the
// MakeArrayType method.
//
Type^ listOf = List::typeid;
Type^ listOfTFirst = listOf->MakeGenericType(TFirst);
array<Type^>^ mParamTypes = { TFirst->MakeArrayType() };
MethodBuilder^ exMethod =
myType->DefineMethod("ExampleMethod",
MethodAttributes::Public | MethodAttributes::Static,
listOfTFirst,
mParamTypes);
// Emit the method body.
// The method body consists of just three opcodes, to load
// the input array onto the execution stack, to call the
// List<TFirst> constructor that takes IEnumerable<TFirst>,
// which does all the work of putting the input elements into
// the list, and to return, leaving the list on the stack. The
// hard work is getting the constructor.
//
// The GetConstructor method is not supported on a
// GenericTypeParameterBuilder, so it is not possible to get
// the constructor of List<TFirst> directly. There are two
// steps, first getting the constructor of generic<T> List and then
// calling a method that converts it to the corresponding
// constructor of List<TFirst>.
//
// The constructor needed here is the one that takes an
// IEnumerable<T>. Note, however, that this is not the
// generic type definition of generic<T> IEnumerable; instead, the
// T from generic<T> List must be substituted for the T of
// generic<T> IEnumerable. (This seems confusing only because both
// types have type parameters named T. That is why this example
// uses the somewhat silly names TFirst and TSecond.) To get
// the type of the constructor argument, take the generic
// type definition generic<T> IEnumerable and
// call MakeGenericType with the first generic type parameter
// of generic<T> List. The constructor argument list must be passed
// as an array, with just one argument in this case.
//
// Now it is possible to get the constructor of generic<T> List,
// using GetConstructor on the generic type definition. To get
// the constructor of List<TFirst>, pass List<TFirst> and
// the constructor from generic<T> List to the static
// TypeBuilder.GetConstructor method.
//
ILGenerator^ ilgen = exMethod->GetILGenerator();
Type^ ienumOf = IEnumerable::typeid;
Type^ TfromListOf = listOf->GetGenericArguments()[0];
Type^ ienumOfT = ienumOf->MakeGenericType(TfromListOf);
array<Type^>^ ctorArgs = {ienumOfT};
ConstructorInfo^ ctorPrep = listOf->GetConstructor(ctorArgs);
ConstructorInfo^ ctor =
TypeBuilder::GetConstructor(listOfTFirst, ctorPrep);
ilgen->Emit(OpCodes::Ldarg_0);
ilgen->Emit(OpCodes::Newobj, ctor);
ilgen->Emit(OpCodes::Ret);
// Create the type and save the assembly.
Type^ finished = myType->CreateType();
myAssembly->Save( String::Concat( myAsmName->Name, L".dll" ) );
// Invoke the method.
// ExampleMethod is not generic, but the type it belongs to is
// generic, so in order to get a MethodInfo that can be invoked
// it is necessary to create a constructed type. The Example
// class satisfies the constraints on TFirst, because it is a
// reference type and has a default constructor. In order to
// have a class that satisfies the constraints on TSecond,
// this code example defines the ExampleDerived type. These
// two types are passed to MakeGenericMethod to create the
// constructed type.
//
array<Type^>^ typeArgs =
{ Example::typeid, ExampleDerived::typeid };
Type^ constructed = finished->MakeGenericType(typeArgs);
MethodInfo^ mi = constructed->GetMethod("ExampleMethod");
// Create an array of Example objects, as input to the generic
// method. This array must be passed as the only element of an
// array of arguments. The first argument of Invoke is
// null, because ExampleMethod is static. Display the count
// on the resulting List<Example>.
//
array<Example^>^ input = { gcnew Example(), gcnew Example() };
array<Object^>^ arguments = { input };
List<Example^>^ listX =
(List<Example^>^) mi->Invoke(nullptr, arguments);
Console::WriteLine(
"\nThere are {0} elements in the List<Example>.",
listX->Count);
DisplayGenericParameters(finished);
}
/* This code example produces the following output:
Type 'Sample' is generic: False
Type 'Sample' is generic: True
There are 2 elements in the List<Example>.
Listing 2 type parameters for type 'Sample[TFirst,TSecond]'.
Type parameter TFirst:
ReferenceTypeConstraint
DefaultConstructorConstraint
Type parameter TSecond:
Interface constraint: IExampleA
Interface constraint: IExampleB
Base type constraint: ExampleBase
*/
using System;
using System.Reflection;
using System.Reflection.Emit;
using System.Collections.Generic;
// Define a trivial base class and two trivial interfaces
// to use when demonstrating constraints.
//
public class ExampleBase {}
public interface IExampleA {}
public interface IExampleB {}
// Define a trivial type that can substitute for type parameter
// TSecond.
//
public class ExampleDerived : ExampleBase, IExampleA, IExampleB {}
public class Example
{
public static void Main()
{
// Define a dynamic assembly to contain the sample type. The
// assembly will not be run, but only saved to disk, so
// AssemblyBuilderAccess.Save is specified.
//
AppDomain myDomain = AppDomain.CurrentDomain;
AssemblyName myAsmName = new AssemblyName("GenericEmitExample1");
AssemblyBuilder myAssembly =
myDomain.DefineDynamicAssembly(myAsmName,
AssemblyBuilderAccess.RunAndSave);
// An assembly is made up of executable modules. For a single-
// module assembly, the module name and file name are the same
// as the assembly name.
//
ModuleBuilder myModule =
myAssembly.DefineDynamicModule(myAsmName.Name,
myAsmName.Name + ".dll");
// Get type objects for the base class trivial interfaces to
// be used as constraints.
//
Type baseType = typeof(ExampleBase);
Type interfaceA = typeof(IExampleA);
Type interfaceB = typeof(IExampleB);
// Define the sample type.
//
TypeBuilder myType =
myModule.DefineType("Sample", TypeAttributes.Public);
Console.WriteLine("Type 'Sample' is generic: {0}",
myType.IsGenericType);
// Define type parameters for the type. Until you do this,
// the type is not generic, as the preceding and following
// WriteLine statements show. The type parameter names are
// specified as an array of strings. To make the code
// easier to read, each GenericTypeParameterBuilder is placed
// in a variable with the same name as the type parameter.
//
string[] typeParamNames = {"TFirst", "TSecond"};
GenericTypeParameterBuilder[] typeParams =
myType.DefineGenericParameters(typeParamNames);
GenericTypeParameterBuilder TFirst = typeParams[0];
GenericTypeParameterBuilder TSecond = typeParams[1];
Console.WriteLine("Type 'Sample' is generic: {0}",
myType.IsGenericType);
// Apply constraints to the type parameters.
//
// A type that is substituted for the first parameter, TFirst,
// must be a reference type and must have a parameterless
// constructor.
TFirst.SetGenericParameterAttributes(
GenericParameterAttributes.DefaultConstructorConstraint |
GenericParameterAttributes.ReferenceTypeConstraint);
// A type that is substituted for the second type
// parameter must implement IExampleA and IExampleB, and
// inherit from the trivial test class ExampleBase. The
// interface constraints are specified as an array
// containing the interface types.
TSecond.SetBaseTypeConstraint(baseType);
Type[] interfaceTypes = {interfaceA, interfaceB};
TSecond.SetInterfaceConstraints(interfaceTypes);
// The following code adds a private field named ExampleField,
// of type TFirst.
FieldBuilder exField =
myType.DefineField("ExampleField", TFirst,
FieldAttributes.Private);
// Define a static method that takes an array of TFirst and
// returns a List<TFirst> containing all the elements of
// the array. To define this method it is necessary to create
// the type List<TFirst> by calling MakeGenericType on the
// generic type definition, List<T>. (The T is omitted with
// the typeof operator when you get the generic type
// definition.) The parameter type is created by using the
// MakeArrayType method.
//
Type listOf = typeof(List<>);
Type listOfTFirst = listOf.MakeGenericType(TFirst);
Type[] mParamTypes = {TFirst.MakeArrayType()};
MethodBuilder exMethod =
myType.DefineMethod("ExampleMethod",
MethodAttributes.Public | MethodAttributes.Static,
listOfTFirst,
mParamTypes);
// Emit the method body.
// The method body consists of just three opcodes, to load
// the input array onto the execution stack, to call the
// List<TFirst> constructor that takes IEnumerable<TFirst>,
// which does all the work of putting the input elements into
// the list, and to return, leaving the list on the stack. The
// hard work is getting the constructor.
//
// The GetConstructor method is not supported on a
// GenericTypeParameterBuilder, so it is not possible to get
// the constructor of List<TFirst> directly. There are two
// steps, first getting the constructor of List<T> and then
// calling a method that converts it to the corresponding
// constructor of List<TFirst>.
//
// The constructor needed here is the one that takes an
// IEnumerable<T>. Note, however, that this is not the
// generic type definition of IEnumerable<T>; instead, the
// T from List<T> must be substituted for the T of
// IEnumerable<T>. (This seems confusing only because both
// types have type parameters named T. That is why this example
// uses the somewhat silly names TFirst and TSecond.) To get
// the type of the constructor argument, take the generic
// type definition IEnumerable<T> (expressed as
// IEnumerable<> when you use the typeof operator) and
// call MakeGenericType with the first generic type parameter
// of List<T>. The constructor argument list must be passed
// as an array, with just one argument in this case.
//
// Now it is possible to get the constructor of List<T>,
// using GetConstructor on the generic type definition. To get
// the constructor of List<TFirst>, pass List<TFirst> and
// the constructor from List<T> to the static
// TypeBuilder.GetConstructor method.
//
ILGenerator ilgen = exMethod.GetILGenerator();
Type ienumOf = typeof(IEnumerable<>);
Type TfromListOf = listOf.GetGenericArguments()[0];
Type ienumOfT = ienumOf.MakeGenericType(TfromListOf);
Type[] ctorArgs = {ienumOfT};
ConstructorInfo ctorPrep = listOf.GetConstructor(ctorArgs);
ConstructorInfo ctor =
TypeBuilder.GetConstructor(listOfTFirst, ctorPrep);
ilgen.Emit(OpCodes.Ldarg_0);
ilgen.Emit(OpCodes.Newobj, ctor);
ilgen.Emit(OpCodes.Ret);
// Create the type and save the assembly.
Type finished = myType.CreateType();
myAssembly.Save(myAsmName.Name+".dll");
// Invoke the method.
// ExampleMethod is not generic, but the type it belongs to is
// generic, so in order to get a MethodInfo that can be invoked
// it is necessary to create a constructed type. The Example
// class satisfies the constraints on TFirst, because it is a
// reference type and has a default constructor. In order to
// have a class that satisfies the constraints on TSecond,
// this code example defines the ExampleDerived type. These
// two types are passed to MakeGenericMethod to create the
// constructed type.
//
Type[] typeArgs = {typeof(Example), typeof(ExampleDerived)};
Type constructed = finished.MakeGenericType(typeArgs);
MethodInfo mi = constructed.GetMethod("ExampleMethod");
// Create an array of Example objects, as input to the generic
// method. This array must be passed as the only element of an
// array of arguments. The first argument of Invoke is
// null, because ExampleMethod is static. Display the count
// on the resulting List<Example>.
//
Example[] input = {new Example(), new Example()};
object[] arguments = {input};
List<Example> listX =
(List<Example>) mi.Invoke(null, arguments);
Console.WriteLine(
"\nThere are {0} elements in the List<Example>.",
listX.Count);
DisplayGenericParameters(finished);
}
private static void DisplayGenericParameters(Type t)
{
if (!t.IsGenericType)
{
Console.WriteLine("Type '{0}' is not generic.");
return;
}
if (!t.IsGenericTypeDefinition)
{
t = t.GetGenericTypeDefinition();
}
Type[] typeParameters = t.GetGenericArguments();
Console.WriteLine("\nListing {0} type parameters for type '{1}'.",
typeParameters.Length, t);
foreach( Type tParam in typeParameters )
{
Console.WriteLine("\r\nType parameter {0}:", tParam.ToString());
foreach( Type c in tParam.GetGenericParameterConstraints() )
{
if (c.IsInterface)
{
Console.WriteLine(" Interface constraint: {0}", c);
}
else
{
Console.WriteLine(" Base type constraint: {0}", c);
}
}
ListConstraintAttributes(tParam);
}
}
// List the constraint flags. The GenericParameterAttributes
// enumeration contains two sets of attributes, variance and
// constraints. For this example, only constraints are used.
//
private static void ListConstraintAttributes(Type t)
{
// Mask off the constraint flags.
GenericParameterAttributes constraints =
t.GenericParameterAttributes & GenericParameterAttributes.SpecialConstraintMask;
if ((constraints & GenericParameterAttributes.ReferenceTypeConstraint)
!= GenericParameterAttributes.None)
{
Console.WriteLine(" ReferenceTypeConstraint");
}
if ((constraints & GenericParameterAttributes.NotNullableValueTypeConstraint)
!= GenericParameterAttributes.None)
{
Console.WriteLine(" NotNullableValueTypeConstraint");
}
if ((constraints & GenericParameterAttributes.DefaultConstructorConstraint)
!=GenericParameterAttributes.None)
{
Console.WriteLine(" DefaultConstructorConstraint");
}
}
}
/* This code example produces the following output:
Type 'Sample' is generic: False
Type 'Sample' is generic: True
There are 2 elements in the List<Example>.
Listing 2 type parameters for type 'Sample[TFirst,TSecond]'.
Type parameter TFirst:
ReferenceTypeConstraint
DefaultConstructorConstraint
Type parameter TSecond:
Interface constraint: IExampleA
Interface constraint: IExampleB
Base type constraint: ExampleBase
*/
Imports System.Reflection
Imports System.Reflection.Emit
Imports System.Collections.Generic
' Define a trivial base class and two trivial interfaces
' to use when demonstrating constraints.
'
Public Class ExampleBase
End Class
Public Interface IExampleA
End Interface
Public Interface IExampleB
End Interface
' Define a trivial type that can substitute for type parameter
' TSecond.
'
Public Class ExampleDerived
Inherits ExampleBase
Implements IExampleA, IExampleB
End Class
Public Class Example
Public Shared Sub Main()
' Define a dynamic assembly to contain the sample type. The
' assembly will not be run, but only saved to disk, so
' AssemblyBuilderAccess.Save is specified.
'
Dim myDomain As AppDomain = AppDomain.CurrentDomain
Dim myAsmName As New AssemblyName("GenericEmitExample1")
Dim myAssembly As AssemblyBuilder = myDomain.DefineDynamicAssembly( _
myAsmName, _
AssemblyBuilderAccess.RunAndSave)
' An assembly is made up of executable modules. For a single-
' module assembly, the module name and file name are the same
' as the assembly name.
'
Dim myModule As ModuleBuilder = myAssembly.DefineDynamicModule( _
myAsmName.Name, _
myAsmName.Name & ".dll")
' Get type objects for the base class trivial interfaces to
' be used as constraints.
'
Dim baseType As Type = GetType(ExampleBase)
Dim interfaceA As Type = GetType(IExampleA)
Dim interfaceB As Type = GetType(IExampleB)
' Define the sample type.
'
Dim myType As TypeBuilder = myModule.DefineType( _
"Sample", _
TypeAttributes.Public)
Console.WriteLine("Type 'Sample' is generic: {0}", _
myType.IsGenericType)
' Define type parameters for the type. Until you do this,
' the type is not generic, as the preceding and following
' WriteLine statements show. The type parameter names are
' specified as an array of strings. To make the code
' easier to read, each GenericTypeParameterBuilder is placed
' in a variable with the same name as the type parameter.
'
Dim typeParamNames() As String = {"TFirst", "TSecond"}
Dim typeParams() As GenericTypeParameterBuilder = _
myType.DefineGenericParameters(typeParamNames)
Dim TFirst As GenericTypeParameterBuilder = typeParams(0)
Dim TSecond As GenericTypeParameterBuilder = typeParams(1)
Console.WriteLine("Type 'Sample' is generic: {0}", _
myType.IsGenericType)
' Apply constraints to the type parameters.
'
' A type that is substituted for the first parameter, TFirst,
' must be a reference type and must have a parameterless
' constructor.
TFirst.SetGenericParameterAttributes( _
GenericParameterAttributes.DefaultConstructorConstraint _
Or GenericParameterAttributes.ReferenceTypeConstraint)
' A type that is substituted for the second type
' parameter must implement IExampleA and IExampleB, and
' inherit from the trivial test class ExampleBase. The
' interface constraints are specified as an array
' containing the interface types.
TSecond.SetBaseTypeConstraint(baseType)
Dim interfaceTypes() As Type = {interfaceA, interfaceB}
TSecond.SetInterfaceConstraints(interfaceTypes)
' The following code adds a private field named ExampleField,
' of type TFirst.
Dim exField As FieldBuilder = _
myType.DefineField("ExampleField", TFirst, _
FieldAttributes.Private)
' Define a Shared method that takes an array of TFirst and
' returns a List(Of TFirst) containing all the elements of
' the array. To define this method it is necessary to create
' the type List(Of TFirst) by calling MakeGenericType on the
' generic type definition, List(Of T). (The T is omitted with
' the GetType operator when you get the generic type
' definition.) The parameter type is created by using the
' MakeArrayType method.
'
Dim listOf As Type = GetType(List(Of ))
Dim listOfTFirst As Type = listOf.MakeGenericType(TFirst)
Dim mParamTypes() As Type = { TFirst.MakeArrayType() }
Dim exMethod As MethodBuilder = _
myType.DefineMethod("ExampleMethod", _
MethodAttributes.Public Or MethodAttributes.Static, _
listOfTFirst, _
mParamTypes)
' Emit the method body.
' The method body consists of just three opcodes, to load
' the input array onto the execution stack, to call the
' List(Of TFirst) constructor that takes IEnumerable(Of TFirst),
' which does all the work of putting the input elements into
' the list, and to return, leaving the list on the stack. The
' hard work is getting the constructor.
'
' The GetConstructor method is not supported on a
' GenericTypeParameterBuilder, so it is not possible to get
' the constructor of List(Of TFirst) directly. There are two
' steps, first getting the constructor of List(Of T) and then
' calling a method that converts it to the corresponding
' constructor of List(Of TFirst).
'
' The constructor needed here is the one that takes an
' IEnumerable(Of T). Note, however, that this is not the
' generic type definition of IEnumerable(Of T); instead, the
' T from List(Of T) must be substituted for the T of
' IEnumerable(Of T). (This seems confusing only because both
' types have type parameters named T. That is why this example
' uses the somewhat silly names TFirst and TSecond.) To get
' the type of the constructor argument, take the generic
' type definition IEnumerable(Of T) (expressed as
' IEnumerable(Of ) when you use the GetType operator) and
' call MakeGenericType with the first generic type parameter
' of List(Of T). The constructor argument list must be passed
' as an array, with just one argument in this case.
'
' Now it is possible to get the constructor of List(Of T),
' using GetConstructor on the generic type definition. To get
' the constructor of List(Of TFirst), pass List(Of TFirst) and
' the constructor from List(Of T) to the static
' TypeBuilder.GetConstructor method.
'
Dim ilgen As ILGenerator = exMethod.GetILGenerator()
Dim ienumOf As Type = GetType(IEnumerable(Of ))
Dim listOfTParams() As Type = listOf.GetGenericArguments()
Dim TfromListOf As Type = listOfTParams(0)
Dim ienumOfT As Type = ienumOf.MakeGenericType(TfromListOf)
Dim ctorArgs() As Type = { ienumOfT }
Dim ctorPrep As ConstructorInfo = _
listOf.GetConstructor(ctorArgs)
Dim ctor As ConstructorInfo = _
TypeBuilder.GetConstructor(listOfTFirst, ctorPrep)
ilgen.Emit(OpCodes.Ldarg_0)
ilgen.Emit(OpCodes.Newobj, ctor)
ilgen.Emit(OpCodes.Ret)
' Create the type and save the assembly.
Dim finished As Type = myType.CreateType()
myAssembly.Save(myAsmName.Name & ".dll")
' Invoke the method.
' ExampleMethod is not generic, but the type it belongs to is
' generic, so in order to get a MethodInfo that can be invoked
' it is necessary to create a constructed type. The Example
' class satisfies the constraints on TFirst, because it is a
' reference type and has a default constructor. In order to
' have a class that satisfies the constraints on TSecond,
' this code example defines the ExampleDerived type. These
' two types are passed to MakeGenericMethod to create the
' constructed type.
'
Dim typeArgs() As Type = _
{ GetType(Example), GetType(ExampleDerived) }
Dim constructed As Type = finished.MakeGenericType(typeArgs)
Dim mi As MethodInfo = constructed.GetMethod("ExampleMethod")
' Create an array of Example objects, as input to the generic
' method. This array must be passed as the only element of an
' array of arguments. The first argument of Invoke is
' Nothing, because ExampleMethod is Shared. Display the count
' on the resulting List(Of Example).
'
Dim input() As Example = { New Example(), New Example() }
Dim arguments() As Object = { input }
Dim listX As List(Of Example) = mi.Invoke(Nothing, arguments)
Console.WriteLine(vbLf & _
"There are {0} elements in the List(Of Example).", _
listX.Count _
)
DisplayGenericParameters(finished)
End Sub
Private Shared Sub DisplayGenericParameters(ByVal t As Type)
If Not t.IsGenericType Then
Console.WriteLine("Type '{0}' is not generic.")
Return
End If
If Not t.IsGenericTypeDefinition Then _
t = t.GetGenericTypeDefinition()
Dim typeParameters() As Type = t.GetGenericArguments()
Console.WriteLine(vbCrLf & _
"Listing {0} type parameters for type '{1}'.", _
typeParameters.Length, t)
For Each tParam As Type In typeParameters
Console.WriteLine(vbCrLf & "Type parameter {0}:", _
tParam.ToString())
For Each c As Type In tParam.GetGenericParameterConstraints()
If c.IsInterface Then
Console.WriteLine(" Interface constraint: {0}", c)
Else
Console.WriteLine(" Base type constraint: {0}", c)
End If
Next
ListConstraintAttributes(tParam)
Next tParam
End Sub
' List the constraint flags. The GenericParameterAttributes
' enumeration contains two sets of attributes, variance and
' constraints. For this example, only constraints are used.
'
Private Shared Sub ListConstraintAttributes(ByVal t As Type)
' Mask off the constraint flags.
Dim constraints As GenericParameterAttributes = _
t.GenericParameterAttributes And _
GenericParameterAttributes.SpecialConstraintMask
If (constraints And GenericParameterAttributes.ReferenceTypeConstraint) _
<> GenericParameterAttributes.None Then _
Console.WriteLine(" ReferenceTypeConstraint")
If (constraints And GenericParameterAttributes.NotNullableValueTypeConstraint) _
<> GenericParameterAttributes.None Then _
Console.WriteLine(" NotNullableValueTypeConstraint")
If (constraints And GenericParameterAttributes.DefaultConstructorConstraint) _
<> GenericParameterAttributes.None Then _
Console.WriteLine(" DefaultConstructorConstraint")
End Sub
End Class
' This code example produces the following output:
'
'Type 'Sample' is generic: False
'Type 'Sample' is generic: True
'
'There are 2 elements in the List(Of Example).
'
'Listing 2 type parameters for type 'Sample[TFirst,TSecond]'.
'
'Type parameter TFirst:
' ReferenceTypeConstraint
' DefaultConstructorConstraint
'
'Type parameter TSecond:
' Interface constraint: IExampleA
' Interface constraint: IExampleB
' Base type constraint: ExampleBase
Комментарии
Специальные ограничения могут указывать, что любой тип, назначенный параметру универсального типа, должен иметь конструктор без параметров, должен быть ссылочным типом или быть типом значения.
Специальные ограничения нельзя получить с помощью методов GenericTypeParameterBuilder класса . После создания универсального типа, содержащего параметр типа, можно использовать его Type объект для отражения параметров типа и их ограничений. Чтобы получить параметры типа завершенного универсального типа, используйте Type.GetGenericArguments метод . Чтобы получить специальные ограничения для каждого параметра типа, используйте Type.GenericParameterAttributes свойство .
Значения GenericParameterAttributes перечисления, ссылающиеся на характеристики дисперсии параметра типа, применимы только в языках, поддерживающих ковариацию и контрвариантность, таких как msil(msil). Visual Basic и C# в настоящее время не поддерживают ковариацию и контрвариацию.