Поделиться через


Использование типов больших значений в собственном клиенте SQL Server

Применимо к:SQL ServerAzure SQL DatabaseAzure Managed InstanceAzure Synapse Analytics AnalyticsPlatform System (PDW)

Внимание

Собственный клиент SQL Server (часто сокращенный SNAC) был удален из SQL Server 2022 (16.x) и SQL Server Management Studio 19 (SSMS). Собственный клиент SQL Server (SQLNCLI или SQLNCLI11) и устаревший поставщик Microsoft OLE DB для SQL Server (SQLOLEDB) не рекомендуется для разработки новых приложений. Перейдите на новый драйвер Microsoft OLE DB (MSOLEDBSQL) для SQL Server или последний драйвер Microsoft ODBC для SQL Server . Сведения о SQLNCLI, которые поставляется в качестве компонента ядра СУБД SQL Server (версии 2012–2019), см. в этом исключении жизненного цикла поддержки.

Перед SQL Server 2005 (9.x) работа с типами данных больших значений требует специальной обработки. Типы данных больших значений — это типы, размер которых превышает максимальный размер строки в 8 КБ. SQL Server 2005 (9.x) представил максимальный описатель для типов данных varchar, nvarchar и varbinary, чтобы разрешить хранение значений размером 2^31 –1 байт. Столбцы таблиц и переменные Transact-SQL могут указывать типы данных varchar(max),nvarchar(max) или varbinary(max).

Заметка

Типы больших значений могут иметь максимальный размер от 1 до 8 КБ или они могут быть указаны как неограниченные.

Ранее только типы данных SQL Server, такие как текст, ntext и изображение , могли достичь такой длины. Максимальный описатель для varchar, nvarchar и varbinary сделал эти типы данных избыточными. Однако поскольку типы данных большой длины до сих пор доступны, большинство интерфейсов к компонентам доступа к данным OLE DB и ODBC остаются теми же. Для обратной совместимости с предыдущими выпусками флаг DBCOLUMNFLAGS_ISLONG в поставщике OLE DB собственного клиента SQL Server, а SQL_LONGVARCHAR в драйвере ODBC собственного клиента SQL Server остаются в использовании. Поставщики и драйверы, написанные в SQL Server 2005 (9.x) и более поздние версии, продолжают использовать эти термины для новых типов, если задано значение неограниченной максимальной длины.

Заметка

Типы данных varchar(max), nvarchar(max) и varbinary(max) можно также указывать в качестве типов входных и выходных параметров хранимых процедур, типов возвращаемых значений функций или в функциях CAST и CONVERT.

Заметка

Если репликация данных может потребоваться настроить параметр конфигурации сервера максимального размера текста repl на -1.

Поставщик OLE DB для собственного клиента SQL Server

Поставщик OLE DB собственного клиента SQL Server предоставляет типы varchar(max), varbinary(max), nvarchar(max) как DBTYPE_STR, DBTYPE_BYTES и DBTYPE_WSTR соответственно.

Типы данных varchar(max), varbinary(max) и nvarchar(max) в столбцах с размером max, установленным в неограниченное значение, представляются как ISLONG через основные наборы строк схемы OLE DB и интерфейсы, возвращающие типы столбцов.

Реализация интерфейса IAccessor объекта команды была изменена, чтобы разрешить привязку типа DBTYPE_IUNKNOWN. Если потребитель указывает DBTYPE_IUNKNOWN и задает для pObject значение NULL, то поставщик возвратит потребителю интерфейс ISequentialStream, чтобы потребитель мог направить данные varchar(max), nvarchar(max) или varbinary(max) из выходных переменных.

Поток значений выходных параметров возвращается после любых результирующих строк. Если приложение пытается перейти к следующему результирующему набору, вызывая метод IMultipleResults::GetResult и не используя все возвращаемые значения выходных параметров, то возвращается DB_E_OBJECTOPEN.

Для поддержки потоковой передачи поставщик OLE DB собственного клиента SQL Server требует, чтобы параметры переменной длины были доступны в последовательном порядке. Это означает, что для свойства DBPROP_ACCESSORDER необходимо задавать либо значение DBPROPVAL_AO_SEQUENTIALSTORAGEOBJECTS, либо значение DBPROPVAL_AO_SEQUENTIAL каждый раз, когда столбцы varchar(max), nvarchchar(max) или varbinary(max) либо выходные параметры привязываются к типу DBTYPE_IUNKNOWN. Если не следовать этому ограничению на порядок доступа, то вызов метода IRowset::GetData завершится с ошибкой DBSTATUS_E_UNAVAILABLE. Это ограничение не применяется, если нет выходных привязок с использованием типа DBTYPE_IUNKNOWN.

Поставщик OLE DB собственного клиента SQL Server также поддерживает привязку выходных параметров в качестве DBTYPE_IUNKNOWN для типов данных больших значений для упрощения сценариев, когда хранимая процедура возвращает большие типы значений в качестве возвращаемых значений, предоставляемых как DBTYPE_IUNKNOWN клиенту.

Работать с этими типами приложение может следующими способами.

  • Привязать как тип, имеющий поддерживаемые привязки к базовому типу столбца (например: для nvarchar(max) выполните привязку, указав тип, который можно привязать к типу nvarchar). Если буфер недостаточно большой, то происходит усечение, точно так же, как и для базового типа, хотя большие значения в данный момент доступны.

  • Привязать как тип, имеющий поддерживаемые преобразования в базовый тип столбца, и также указать тип DBTYPE_BYREF.

  • Выполните привязку, указав тип DBTYPE_IUNKNOWN, и используйте потоковую передачу.

При создании отчетов о максимальном размере столбца поставщик OLE DB собственного клиента SQL Server будет сообщать:

  • Определенный максимальный размер, например 2000 для столбца varchar(2000) или

  • значение "unlimited", если столбец varchar(max) равен ~0. Это значение устанавливается для свойства метаданных DBCOLUMN_COLUMNSIZE.

К столбцу varchar(max) будут применены стандартные правила преобразования. Это значит, что любое преобразование, допустимое для столбца varchar(2000), также допустимо для столбца varchar(max). То же относится к столбцам nvarchar(max) и varbinary(max).

При получении типов больших значений наиболее эффективным подходом является привязка как типа DBTYPE_IUNKNOWN и задание для свойства DBPROP_ACCESSORDER набора строк значения DBPROPVAL_AO_SEQUENTIALSTORAGEOBJECTS. Это вызовет передачу значения в потоке напрямую из сети без промежуточной буферизации, как показано в следующем примере:

#define UNICODE  
#define _UNICODE  
#define DBINITCONSTANTS  
#define INITGUID  
#define OLEDBVER 0x0250  // To include the correct interfaces.  
  
#include <stdio.h>  
#include <tchar.h>  
#include <stddef.h>  
#include <iostream>  
  
using std::cout;  
using std::endl;  
  
#include <windows.h>  
  
#include <oledb.h>  
#include "sqlncli.h"  
#include <oledberr.h>  
  
#define CHKHR_GOTO(hr, errMsg, Label) \  
   if (FAILED(hr)) \  
   { \  
      cout << errMsg << endl; \  
      goto Label; \  
   }  
  
#define MAX_COL_SIZE 8000  
  
// ROUNDUP on all platforms pointers must be aligned properly.  
#define ROUNDUP_AMOUNT 8  
#define ROUNDUP_(size,amount) (((ULONG)(size)+((amount)-1))&~((amount)-1))  
#define ROUNDUP(size) ROUNDUP_(size, ROUNDUP_AMOUNT)  
  
HRESULT InitializeAndEstablishConnection(IDBInitialize** ppIDBInitialize);  
void UnInitializeConnection(IDBInitialize* pIDBInitialize);  
HRESULT CreateAndSetCommand(IDBInitialize* pIDBInitialize, ICommandText** ppICommandText);  
HRESULT ProcessResultSet(IRowset* pIRowset);  
  
void DisplayTime()  
{  
   SYSTEMTIME st;  
   GetSystemTime(&st);  
   cout<< st.wHour << ":" << st.wMinute << ":" << st.wSecond << "." << st.wMilliseconds << endl;  
}  
  
void main()  
{  
   HRESULT hr;  
   IDBInitialize* pIDBInitialize = NULL;  
   ICommandText* pICommandText = NULL;  
   IMultipleResults* pIMultipleResults = NULL;  
   IRowset* pIRowset = NULL;  
  
   hr = InitializeAndEstablishConnection(&pIDBInitialize);  
   CHKHR_GOTO(hr, L"Failed to establish connection.", _ExitMain);  
  
   hr = CreateAndSetCommand(pIDBInitialize, &pICommandText);  
   CHKHR_GOTO(hr, L"Failed to set up command object.", _ExitMain);  
  
   DisplayTime();  
  
   hr = pICommandText->Execute(NULL,   
      IID_IMultipleResults,   
      NULL,   
      NULL,   
     (IUnknown **) &pIMultipleResults);  
  
   CHKHR_GOTO(hr, L"Failed to execute command.", _ExitMain);  
  
   while (1)  
   {  
      hr = pIMultipleResults->GetResult(  
         NULL,   
         DBRESULTFLAG_DEFAULT,   
         IID_IRowset,   
         NULL,   
         (IUnknown**)&pIRowset);  
  
   CHKHR_GOTO(hr, L"Failed to obtain a results from MR object.", _ExitMain);  
  
   if (hr == DB_S_NORESULT)  
      break;  
  
      if (pIRowset)  
      {  
         hr = ProcessResultSet(pIRowset);   
         CHKHR_GOTO(hr, L"Failed to process the current Rowset.", _ExitMain);  
  
         pIRowset->Release();  
         pIRowset = NULL;  
      }  
   }  
  
   DisplayTime();  
  
_ExitMain:  
  
   if (pIRowset)  
   {  
      pIRowset->Release();  
      pIRowset = NULL;  
   }  
  
   if (pIMultipleResults)  
   {  
      pIMultipleResults->Release();  
      pIMultipleResults = NULL;  
   }  
  
   if (pICommandText)  
   {  
      pICommandText->Release();  
      pICommandText = NULL;  
   }  
  
   UnInitializeConnection(pIDBInitialize);  
   return;  
};  
  
HRESULT InitializeAndEstablishConnection(IDBInitialize** ppIDBInitialize)  
{  
   HRESULT hr;  
   IDBInitialize* pIDBInitialize = NULL;  
   IDBProperties* pIDBProperties = NULL;  
  
   const int NUM_DBINIT_PROPS = 3;  
   const wchar_t* const g_wszServer = L".";  
   const wchar_t* const g_wszCatalog = L"AdventureWorks";  
   const wchar_t* const g_wszSecurity = L"SSPI";  
  
   DBPROPSET rgdbPropSetInit[1];  
   DBPROP rgdbPropInit [NUM_DBINIT_PROPS];  
  
   *ppIDBInitialize = NULL;  
   hr = CoInitialize(NULL);  
   CHKHR_GOTO(hr, L"Failed to initialize COM.", _ExitInitialize);  
  
   hr = CoCreateInstance(CLSID_SQLNCLI11,   
      NULL,   
      CLSCTX_INPROC_SERVER,  
      IID_IDBInitialize,   
      (void**)&pIDBInitialize);  
  
   CHKHR_GOTO(hr, L"Failed to create SQLNCLI11 DataSource object.", _ExitInitialize);  
  
   for(int idxProp = 0; idxProp < NUM_DBINIT_PROPS; idxProp++)   
   {  
      VariantInit(&rgdbPropInit[idxProp].vValue);  
   }  
  
   rgdbPropInit[0].dwPropertyID = DBPROP_INIT_DATASOURCE;  
   rgdbPropInit[0].vValue.vt = VT_BSTR;  
   rgdbPropInit[0].vValue.bstrVal= SysAllocString(g_wszServer);  
   rgdbPropInit[0].dwOptions = DBPROPOPTIONS_REQUIRED;  
   rgdbPropInit[0].colid = DB_NULLID;  
  
   if (rgdbPropInit[0].vValue.bstrVal == NULL)  
   {  
      hr = E_OUTOFMEMORY;  
      goto _ExitInitialize;  
   }  
  
   rgdbPropInit[1].dwPropertyID = DBPROP_INIT_CATALOG;  
   rgdbPropInit[1].vValue.vt = VT_BSTR;  
   rgdbPropInit[1].vValue.bstrVal= SysAllocString(g_wszCatalog);  
   rgdbPropInit[1].dwOptions = DBPROPOPTIONS_REQUIRED;  
   rgdbPropInit[1].colid = DB_NULLID;  
  
   if (rgdbPropInit[1].vValue.bstrVal == NULL)  
   {  
      hr = E_OUTOFMEMORY;  
      goto _ExitInitialize;  
   }  
  
   rgdbPropInit[2].dwPropertyID = DBPROP_AUTH_INTEGRATED;  
   rgdbPropInit[2].vValue.vt = VT_BSTR;  
   rgdbPropInit[2].vValue.bstrVal= SysAllocString(g_wszSecurity);  
   rgdbPropInit[2].dwOptions = DBPROPOPTIONS_REQUIRED;  
   rgdbPropInit[2].colid = DB_NULLID;  
  
   if (rgdbPropInit[2].vValue.bstrVal == NULL)  
   {  
      hr = E_OUTOFMEMORY;  
      goto _ExitInitialize;  
   }  
  
   rgdbPropSetInit[0].guidPropertySet = DBPROPSET_DBINIT;  
   rgdbPropSetInit[0].cProperties = NUM_DBINIT_PROPS;  
   rgdbPropSetInit[0].rgProperties = rgdbPropInit;  
  
   hr = pIDBInitialize->QueryInterface(IID_IDBProperties, (void **)&pIDBProperties);  
   CHKHR_GOTO(hr, L"Failed to QI DataSource object for IDBProperties.", _ExitInitialize);  
  
   hr = pIDBProperties->SetProperties(1, rgdbPropSetInit);   
   CHKHR_GOTO(hr, L"Failed to set DataSource object Properties.", _ExitInitialize);  
  
   pIDBProperties->Release();  
   pIDBProperties = NULL;  
  
   hr = pIDBInitialize->Initialize();  
   CHKHR_GOTO(hr, L"Failed to establish connection with the server.", _ExitInitialize);  
  
_ExitInitialize:  
  
   if (pIDBProperties)  
   {  
      pIDBProperties->Release();  
      pIDBProperties = NULL;  
   }  
  
   if (FAILED(hr))  
   {  
      if (pIDBInitialize)  
      {  
         pIDBInitialize->Release();  
         pIDBInitialize = NULL;  
      }  
   }  
  
   *ppIDBInitialize = pIDBInitialize;  
   return hr;  
}  
  
void UnInitializeConnection(IDBInitialize* pIDBInitialize)  
{  
   if (pIDBInitialize)  
   {  
      pIDBInitialize->Uninitialize();  
      pIDBInitialize->Release();  
      pIDBInitialize = NULL;  
   }  
   CoUninitialize();  
}  
  
HRESULT CreateAndSetCommand(IDBInitialize* pIDBInitialize, ICommandText** ppICommandText)  
{  
   HRESULT hr;  
   IDBCreateSession* pIDBCreateSession = NULL;  
   IDBCreateCommand* pIDBCreateCommand = NULL;  
   ICommandText* pICommandText = NULL;  
   ICommandProperties* pICommandProperties = NULL;  
   DBPROPSET rgCmdPropSet[1];  
   DBPROP rgCmdProperties[1];  
  
const wchar_t* const g_wCmdString = L"declare @x xml, @y nvarchar(max); select @x = (SELECT * FROM Sales.SalesOrderHeader FOR XML AUTO); select @x;";  
  
   *ppICommandText = NULL;  
  
   if (!pIDBInitialize)  
   {  
      hr = E_FAIL;  
      goto _ExitCreateAndSetCommand;  
   }  
  
   hr = pIDBInitialize->QueryInterface(IID_IDBCreateSession, (void**) &pIDBCreateSession);  
   CHKHR_GOTO(hr, L"Failed to obtain IDBCreateSession interface from DSO.", _ExitCreateAndSetCommand);  
  
   hr = pIDBCreateSession->CreateSession(  
      NULL,   
      IID_IDBCreateCommand,   
      (IUnknown**) &pIDBCreateCommand);  
  
   CHKHR_GOTO(hr, L"Failed to Create a Session for command execution.", _ExitCreateAndSetCommand);  
  
   hr = pIDBCreateCommand->CreateCommand(  
      NULL,   
      IID_ICommandText,   
      (IUnknown**)&pICommandText);  
  
   CHKHR_GOTO(hr, L"Failed to Create a Command object.", _ExitCreateAndSetCommand);  
  
   hr = pICommandText->SetCommandText(DBGUID_DBSQL, g_wCmdString);  
   CHKHR_GOTO(hr, L"Failed to Set Command Text.", _ExitCreateAndSetCommand);  
  
   hr = pICommandText->QueryInterface(IID_ICommandProperties, (void**) &pICommandProperties);  
   CHKHR_GOTO(hr, L"Failed to obtain ICommandProperties interface from the command object.", _ExitCreateAndSetCommand);  
  
   rgCmdProperties[0].dwPropertyID = DBPROP_ACCESSORDER;  
   rgCmdProperties[0].vValue.vt = VT_I4;  
   rgCmdProperties[0].vValue.lVal = DBPROPVAL_AO_SEQUENTIAL;  
   rgCmdProperties[0].dwOptions = DBPROPOPTIONS_REQUIRED;  
   rgCmdProperties[0].colid = DB_NULLID;  
  
   rgCmdPropSet[0].guidPropertySet = DBPROPSET_ROWSET;  
   rgCmdPropSet[0].cProperties = 1;  
   rgCmdPropSet[0].rgProperties = rgCmdProperties;  
  
   hr = pICommandProperties->SetProperties(1, rgCmdPropSet);   
   CHKHR_GOTO(hr, L"Failed to Set Command object Properties.", _ExitCreateAndSetCommand);  
  
_ExitCreateAndSetCommand:  
  
   if (pICommandProperties)  
   {  
      pICommandProperties->Release();  
      pICommandProperties = NULL;  
   }  
  
   if (pIDBCreateCommand)  
   {  
      pIDBCreateCommand->Release();  
      pIDBCreateCommand = NULL;  
   }  
  
   if (pIDBCreateSession)  
   {  
      pIDBCreateSession->Release();  
      pIDBCreateSession = NULL;  
   }  
  
   if (FAILED(hr))  
   {  
      if (pICommandText)  
      {  
         pICommandText->Release();  
         pICommandText = NULL;  
      }  
   }  
  
   *ppICommandText = pICommandText;  
   return hr;  
}  
  
HRESULT ProcessResultSet(IRowset* pIRowset)  
{  
   HRESULT hr;  
  
   IColumnsInfo* pIColumnsInfo = NULL;  
   DBCOLUMNINFO* pDBColumnInfo = NULL;  
   ULONG lNumCols = 0;  
   wchar_t* pStringsBuffer = NULL;  
  
   DBBINDING* pBindings = NULL;  
   DBOBJECT dbobj;  
   ULONG idxBinding;  
   IAccessor* pIAccessor = NULL;  
   HACCESSOR hAccessor = DB_NULL_HACCESSOR;  
   HROW hRows[1] = {DB_NULL_HROW};  
   HROW* pRow = &hRows[0];  
   BYTE* pBuffer = NULL;  
  
   ULONG lNumRowsRetrieved;  
   DBLENGTH dwOffset = 0;  
  
   hr = pIRowset->QueryInterface(IID_IColumnsInfo, (void **)&pIColumnsInfo);  
   CHKHR_GOTO(hr, L"Failed to QI Rowset for IColumnsInfo.", _ExitProcessResultSet);  
  
   hr = pIColumnsInfo->GetColumnInfo(&lNumCols, &pDBColumnInfo, &pStringsBuffer);  
   CHKHR_GOTO(hr, L"Failed to obtain Column Information.", _ExitProcessResultSet);  
  
   pBindings = new DBBINDING[lNumCols];  
  
   if (!pBindings)  
   {  
      hr = E_OUTOFMEMORY;  
      goto _ExitProcessResultSet;  
   }  
  
   memset(pBindings, 0, sizeof(DBBINDING) * lNumCols);  
  
   dbobj.dwFlags = STGM_READ;  
   dbobj.iid = IID_ISequentialStream;  
  
   for (idxBinding = 0; idxBinding < lNumCols; idxBinding++)   
   {  
      pBindings[idxBinding].iOrdinal = idxBinding + 1;  
      pBindings[idxBinding].obStatus = dwOffset;  
      pBindings[idxBinding].obLength = dwOffset + sizeof(DBSTATUS);  
      pBindings[idxBinding].obValue = dwOffset + sizeof(DBSTATUS) + sizeof(DBLENGTH);  
  
      pBindings[idxBinding].pTypeInfo = NULL;  
      pBindings[idxBinding].pBindExt = NULL;  
      pBindings[idxBinding].dwPart = DBPART_VALUE | DBPART_LENGTH | DBPART_STATUS;  
      pBindings[idxBinding].dwMemOwner = DBMEMOWNER_CLIENTOWNED;  
      pBindings[idxBinding].eParamIO = DBPARAMIO_NOTPARAM;  
      pBindings[idxBinding].bPrecision = pDBColumnInfo[idxBinding].bPrecision;  
      pBindings[idxBinding].bScale = pDBColumnInfo[idxBinding].bScale;  
  
      pBindings[idxBinding].cbMaxLen = 0;  
      pBindings[idxBinding].wType = DBTYPE_WSTR;  
  
   // Determine the maximum number of bytes required in our buffer to  
   // contain the Unicode string representation of the provider's native  
   // data type, including room for the NULL-termination character  
   switch( pDBColumnInfo[idxBinding].wType )  
   {  
      case DBTYPE_NULL:  
      case DBTYPE_EMPTY:  
      case DBTYPE_I1:  
      case DBTYPE_I2:  
      case DBTYPE_I4:  
      case DBTYPE_UI1:  
      case DBTYPE_UI2:  
      case DBTYPE_UI4:  
      case DBTYPE_R4:  
      case DBTYPE_BOOL:  
      case DBTYPE_I8:  
      case DBTYPE_UI8:  
      case DBTYPE_R8:  
      case DBTYPE_CY:  
      case DBTYPE_ERROR:  
      // When the above types are converted to a string, they  
      // will all fit into 25 characters, so use that plus space  
      // for the NULL-terminator.  
  
      pBindings[idxBinding].cbMaxLen = (25 + 1) * sizeof(WCHAR);  
      break;  
  
      case DBTYPE_DECIMAL:  
      case DBTYPE_NUMERIC:  
      case DBTYPE_DATE:  
      case DBTYPE_DBDATE:  
      case DBTYPE_DBTIMESTAMP:  
      case DBTYPE_GUID:  
      // Converted to a string, the above types will all fit into  
      // 50 characters, so use that plus space for the terminator.  
  
      pBindings[idxBinding].cbMaxLen = (50 + 1) * sizeof(WCHAR);  
      break;  
  
      case DBTYPE_BYTES:  
      // In converting DBTYPE_BYTES to a string, each byte  
      // becomes two characters (e.g. 0xFF -> "FF"), so we  
      // will use double the maximum size of the column plus  
      // include space for the NULL-terminator.  
  
      pBindings[idxBinding].cbMaxLen = (pDBColumnInfo[idxBinding].ulColumnSize * 2 + 1) * sizeof(WCHAR);  
      break;  
  
      case DBTYPE_STR:  
      case DBTYPE_WSTR:  
      case DBTYPE_BSTR:  
      // Going from a string to our string representation,  
      // we can just take the maximum size of the column,  
      // a count of characters, and include space for the  
      // terminator, which is not included in the column size.  
  
      pBindings[idxBinding].cbMaxLen = (pDBColumnInfo[idxBinding].ulColumnSize + 1) * sizeof(WCHAR);  
      break;  
  
      default:  
      // For any other type, we will simply use our maximum  
      // column buffer size, since the display size of these  
      // columns may be variable (e.g. DBTYPE_VARIANT) or  
      // unknown (e.g. provider-specific types).  
      pBindings[idxBinding].cbMaxLen = MAX_COL_SIZE;  
      break;  
   }  
  
   // If the provider's native data type for this column is  
   // DBTYPE_IUNKNOWN or this is a BLOB column and the user  
   // has requested that we bind BLOB columns as ISequentialStream  
   // objects, bind this column as an ISequentialStream object if  
   // the provider supports our creating another ISequentialStream  
   // binding.  
   if(pDBColumnInfo[idxBinding].dwFlags & DBCOLUMNFLAGS_ISLONG)  
   {  
      pBindings[idxBinding].wType = DBTYPE_IUNKNOWN;  
  
      pBindings[idxBinding].cbMaxLen = sizeof(ISequentialStream*);  
  
      pBindings[idxBinding].pObject = (DBOBJECT *)CoTaskMemAlloc(sizeof(DBOBJECT));  
  
      if (!pBindings[idxBinding].pObject)  
      {  
         hr = E_OUTOFMEMORY;  
         goto _ExitProcessResultSet;  
      }  
  
      // Direct the provider to create an ISequentialStream  
      // object over the data for this column.  
      pBindings[idxBinding].pObject->iid = IID_ISequentialStream;  
  
      // We want read access on the ISequentialStream  
      // object that the provider will create for us  
      pBindings[idxBinding].pObject->dwFlags = STGM_READ;  
      }  
  
      // Ensure that the bound maximum length is no more than the  
      // maximum column size in bytes that we've defined.  
      pBindings[idxBinding].cbMaxLen = min(pBindings[idxBinding].cbMaxLen, MAX_COL_SIZE);  
  
      // Update the offset past the end of this column's data, so  
      // that the next column will begin in the correct place in  
      // the buffer.  
      dwOffset = pBindings[idxBinding].cbMaxLen + pBindings[idxBinding].obValue;  
  
      // Ensure that the data for the next column will be correctly  
      // aligned for all platforms, or, if we're done with columns,  
      // that if we allocate space for multiple rows that the data  
      // for every row is correctly aligned.  
      dwOffset = ROUNDUP(dwOffset);  
   }  
  
   hr = pIRowset->QueryInterface(IID_IAccessor, (void **) &pIAccessor);  
   CHKHR_GOTO(hr, L"Failed to obtain Accessor interface", _ExitProcessResultSet);  
  
   hr = pIAccessor->CreateAccessor(DBACCESSOR_ROWDATA,  
      lNumCols,  
      pBindings,  
      0,  
      &hAccessor,  
      NULL);  
  
   CHKHR_GOTO(hr, L"Failed to create Accessor", _ExitProcessResultSet);  
   for (idxBinding = 0; idxBinding < lNumCols; idxBinding++)   
   {  
      cout << pDBColumnInfo[idxBinding].pwszName << endl;  
   }  
  
   lNumRowsRetrieved = 0;  
  
   hr = pIRowset->GetNextRows(  
      NULL,  
      0,  
      1,  
      &lNumRowsRetrieved,  
      &pRow);  
  
   CHKHR_GOTO(hr, L"Failed to fetch a row from the rowset", _ExitProcessResultSet);  
  
   pBuffer = new BYTE[sizeof(DBSTATUS) + sizeof(DBLENGTH) + sizeof(IUnknown*)];  
  
   if (!pBuffer)  
   {  
      hr = E_OUTOFMEMORY;  
      goto _ExitProcessResultSet;  
   }  
  
   while(lNumRowsRetrieved && hr != DB_S_ENDOFROWSET)   
   {  
      memset(pBuffer, 0, sizeof(DBSTATUS) + sizeof(DBLENGTH) + sizeof(IUnknown*));  
  
      hr = pIRowset->GetData(hRows[0], hAccessor, pBuffer);  
      CHKHR_GOTO(hr, L"Failed to obtain row data", _ExitProcessResultSet);  
  
      for (idxBinding = 0; idxBinding < lNumCols; idxBinding++)  
      {  
         if (pBindings[idxBinding].wType == DBTYPE_IUNKNOWN)  
         {  
            BYTE pbBuff[3000];  
            ULONG cbNeeded = sizeof(pbBuff)/sizeof(BYTE);  
            ULONG cbRead;  
            ULONG cbReadTotal = 0;  
            ISequentialStream* pISequentialStream = NULL;  
  
            IUnknown* pIUnknown = *((IUnknown**)(pBuffer + pBindings[idxBinding].obValue));  
            pIUnknown->QueryInterface(IID_ISequentialStream, (void**)&pISequentialStream);  
  
            do  
            {  
               hr = pISequentialStream->Read(pbBuff, cbNeeded, &cbRead);  
               cbReadTotal += cbRead;  
            }  
            while (SUCCEEDED(hr) && hr != S_FALSE && cbRead == cbNeeded);  
  
               cout << "Total Bytes Read: " << cbReadTotal << endl;  
  
               pISequentialStream->Release();  
               pISequentialStream = NULL;  
               pIUnknown->Release();  
               pIUnknown = NULL;  
            }  
         }  
  
         pIRowset->ReleaseRows(1, pRow, NULL, NULL, NULL);  
  
         hr = pIRowset->GetNextRows(NULL,  
            0,  
            1,  
            &lNumRowsRetrieved,  
            &pRow);  
  
         CHKHR_GOTO(hr, L"Failed to fetch a row from the rowset.", _ExitProcessResultSet);  
   }  
  
_ExitProcessResultSet:  
  
   pIRowset->ReleaseRows(1, pRow, NULL, NULL, NULL);  
   delete [] pBuffer;  
  
   if (pIAccessor)  
   {  
      if (hAccessor != DB_NULL_HACCESSOR)  
      {  
         pIAccessor->ReleaseAccessor(hAccessor, NULL);  
      }  
  
      pIAccessor->Release();  
      pIAccessor = NULL;  
   }  
  
   if (pBindings)  
   {  
      for (idxBinding = 0; idxBinding < lNumCols; idxBinding++)  
      {  
         if (pBindings[idxBinding].pObject)  
         CoTaskMemFree(pBindings[idxBinding].pObject);  
      }  
   }  
  
   delete [] pBindings;  
  
   CoTaskMemFree(pDBColumnInfo);  
   CoTaskMemFree(pStringsBuffer);  
  
   if (pIColumnsInfo)  
   {  
      pIColumnsInfo->Release();  
      pIColumnsInfo = NULL;  
   }  
  
   return hr;  
}  

Дополнительные сведения о том, как поставщик OLE DB собственного клиента SQL Server предоставляет типы данных больших значений, см. в разделе BLOB-объектов и объектов OLE.

Драйвер ODBC для собственного клиента SQL Server

Драйвер ODBC собственного клиента SQL Server предоставляет типы varchar(max), varbinary(max) и nvarchar(max) как SQL_VARCHAR, SQL_VARBINARY и SQL_WVARCHAR в функциях API ODBC, которые принимают или возвращают типы данных ODBC SQL.

Сообщая максимальный размер столбца, драйвер сообщает:

  • Определенный максимальный размер, например 2000 для столбца varchar(2000) или

  • Значение "неограниченно", которое в случае столбца varchar(max) равно 0.

Стандартные правила преобразования применяются к столбцу varchar(max), что означает, что любое преобразование, допустимое для столбца varchar(2000), также будет допустимым для столбца varchar(max). То же относится к столбцам nvarchar(max) и varbinary(max).

Ниже приведен список функций ODBC API, которые были улучшены для работы с типами больших значений:

См. также

Компоненты собственного клиента SQL Server