Aracılığıyla paylaş


Dış kullanıcı tanımlı skaler işlevler (UDF' ler)

Şunlar için geçerlidir:evet olarak işaretlenmiş Databricks Runtime

Kullanıcı tanımlı skaler işlevler (UDF' ler), tek bir satırda hareket eden kullanıcı tarafından programlanabilir yordamlardır. Bu belge, UDF'leri oluşturmak ve kaydetmek için gereken sınıfları listeler. Ayrıca, UDF'leri tanımlamayı ve kaydetmeyi ve Spark SQL'de çağırmayı gösteren örnekler içerir.

UserDefinedFunction sınıfı

Kullanıcı tanımlı bir işlevin özelliklerini tanımlamak için bu sınıfta tanımlanan yöntemlerden bazılarını kullanabilirsiniz.

  • asNonNullable(): UserDefinedFunction: UserDefinedFunction'i null atanamaz olarak günceller.
  • asNondeterministic(): UserDefinedFunction: UserDefinedFunction bir belirsizliğe günceller.
  • withName(name: String): UserDefinedFunction: UserDefinedFunction belirli bir adla günceller.

Örnekler

Scala

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.udf

val spark = SparkSession
      .builder()
      .appName("Spark SQL UDF scalar example")
      .getOrCreate()

// Define and register a zero-argument non-deterministic UDF
// UDF is deterministic by default, i.e. produces the same result for the same input.
val random = udf(() => Math.random())
spark.udf.register("random", random.asNondeterministic())
spark.sql("SELECT random()").show()
// +-------+
// |UDF()  |
// +-------+
// |xxxxxxx|
// +-------+

// Define and register a one-argument UDF
val plusOne = udf((x: Int) => x + 1)
spark.udf.register("plusOne", plusOne)
spark.sql("SELECT plusOne(5)").show()
// +------+
// |UDF(5)|
// +------+
// |     6|
// +------+

// Define a two-argument UDF and register it with Spark in one step
spark.udf.register("strLenScala", (_: String).length + (_: Int))
spark.sql("SELECT strLenScala('test', 1)").show()
// +--------------------+
// |strLenScala(test, 1)|
// +--------------------+
// |                   5|
// +--------------------+

// UDF in a WHERE clause
spark.udf.register("oneArgFilter", (n: Int) => { n > 5 })
spark.range(1, 10).createOrReplaceTempView("test")
spark.sql("SELECT * FROM test WHERE oneArgFilter(id)").show()
// +---+
// | id|
// +---+
// |  6|
// |  7|
// |  8|
// |  9|
// +---+

Java

import org.apache.spark.sql.*;
import org.apache.spark.sql.api.java.UDF1;
import org.apache.spark.sql.expressions.UserDefinedFunction;
import static org.apache.spark.sql.functions.udf;
import org.apache.spark.sql.types.DataTypes;

SparkSession spark = SparkSession
      .builder()
      .appName("Java Spark SQL UDF scalar example")
      .getOrCreate();

// Define and register a zero-argument non-deterministic UDF
// UDF is deterministic by default, i.e. produces the same result for the same input.
UserDefinedFunction random = udf(
  () -> Math.random(), DataTypes.DoubleType
);
random.asNondeterministic();
spark.udf().register("random", random);
spark.sql("SELECT random()").show();
// +-------+
// |UDF()  |
// +-------+
// |xxxxxxx|
// +-------+

// Define and register a one-argument UDF
spark.udf().register("plusOne", new UDF1<Integer, Integer>() {
  @Override
  public Integer call(Integer x) {
    return x + 1;
  }
}, DataTypes.IntegerType);
spark.sql("SELECT plusOne(5)").show();
// +----------+
// |plusOne(5)|
// +----------+
// |         6|
// +----------+

// Define and register a two-argument UDF
UserDefinedFunction strLen = udf(
  (String s, Integer x) -> s.length() + x, DataTypes.IntegerType
);
spark.udf().register("strLen", strLen);
spark.sql("SELECT strLen('test', 1)").show();
// +------------+
// |UDF(test, 1)|
// +------------+
// |           5|
// +------------+

// UDF in a WHERE clause
spark.udf().register("oneArgFilter", new UDF1<Long, Boolean>() {
  @Override
  public Boolean call(Long x) {
    return  x > 5;
  }
}, DataTypes.BooleanType);
spark.range(1, 10).createOrReplaceTempView("test");
spark.sql("SELECT * FROM test WHERE oneArgFilter(id)").show();
// +---+
// | id|
// +---+
// |  6|
// |  7|
// |  8|
// |  9|
// +---+