Aracılığıyla paylaş


Apache Flink® DataStream API ile Apache HBase'e® ileti yazma

Not

31 Ocak 2025'te AKS'de Azure HDInsight'ı kullanımdan kaldırmaya devam edeceğiz. 31 Ocak 2025'den önce, iş yüklerinizin aniden sonlandırılmasını önlemek için iş yüklerinizi Microsoft Fabric'e veya eşdeğer bir Azure ürününe geçirmeniz gerekir. Aboneliğinizdeki kalan kümeler durdurulur ve konaktan kaldırılır.

Kullanımdan kaldırma tarihine kadar yalnızca temel destek sağlanacaktır.

Önemli

Bu özellik şu anda önizlemededir. Microsoft Azure Önizlemeleri için Ek Kullanım Koşulları, beta, önizleme aşamasında olan veya henüz genel kullanıma sunulmamış Azure özellikleri için geçerli olan daha fazla yasal hüküm içerir. Bu belirli önizleme hakkında bilgi için bkz . AKS üzerinde Azure HDInsight önizleme bilgileri. Sorular veya özellik önerileri için lütfen AskHDInsight'ta ayrıntıları içeren bir istek gönderin ve Azure HDInsight Topluluğu hakkında daha fazla güncelleştirme için bizi takip edin.

Bu makalede Apache Flink DataStream API ile HBase'e ileti yazmayı öğrenin.

Genel bakış

Apache Flink, HBase bağlayıcısını havuz olarak sunar ve Flink ile bu bağlayıcı ile gerçek zamanlı bir işleme uygulamasının çıkışını HBase'de depolayabilirsiniz. HDInsight Kafka'da akış verilerini kaynak olarak işlemeyi, dönüştürmeleri gerçekleştirmeyi ve ardından HDInsight HBase tablosuna havuza almayı öğrenin.

Gerçek bir dünya senaryosunda bu örnek, canlı algılayıcı verilerini kullanan Nesnelerin İnterneti (IOT) analizinden değer elde etmeye yönelik bir akış analizi katmanıdır. Flink Stream Kafka makalesindeki verileri okuyabilir ve HBase tablosuna yazabilir. Gerçek zamanlı bir akış IOT uygulaması varsa bilgiler toplanabilir, dönüştürülebilir ve iyileştirilebilir.

Önkoşullar

Uygulama Adımları

Kafka konusu oluşturmak için işlem hattını kullanma (kullanıcı tıklama olayı konusu)

weblog.py

import json
import random
import time
from datetime import datetime

user_set = [
        'John',
        'XiaoMing',
        'Mike',
        'Tom',
        'Machael',
        'Zheng Hu',
        'Zark',
        'Tim',
        'Andrew',
        'Pick',
        'Sean',
        'Luke',
        'Chunck'
]

web_set = [
        'https://github.com',
        'https://www.bing.com/new',
        'https://kafka.apache.org',
        'https://hbase.apache.org',
        'https://flink.apache.org',
        'https://spark.apache.org',
        'https://trino.io',
        'https://hadoop.apache.org',
        'https://stackoverflow.com',
        'https://docs.python.org',
        'https://azure.microsoft.com/products/category/storage',
        '/azure/hdinsight/hdinsight-overview',
        'https://azure.microsoft.com/products/category/storage'
]

def main():
        while True:
                if random.randrange(13) < 4:
                        url = random.choice(web_set[:3])
                else:
                        url = random.choice(web_set)

                log_entry = {
                        'userName': random.choice(user_set),
                        'visitURL': url,
                        'ts': datetime.now().strftime("%m/%d/%Y %H:%M:%S")
                }

                print(json.dumps(log_entry))
                time.sleep(0.05)

if __name__ == "__main__":
    main()

Apache Kafka konu başlığı oluşturmak için işlem hattını kullanma

Kafka konusu için click_events kullanacağız

python weblog.py | /usr/hdp/current/kafka-broker/bin/kafka-console-producer.sh --bootstrap-server wn0-contsk:9092 --topic click_events

Kafka'da örnek komutlar

-- create topic (replace with your Kafka bootstrap server)
/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --create --replication-factor 2 --partitions 3 --topic click_events --bootstrap-server wn0-contsk:9092

-- delete topic (replace with your Kafka bootstrap server)
/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --delete  --topic click_events --bootstrap-server wn0-contsk:9092

-- produce topic (replace with your Kafka bootstrap server)
python weblog.py | /usr/hdp/current/kafka-broker/bin/kafka-console-producer.sh --bootstrap-server wn0-contsk:9092 --topic click_events

-- consume topic
/usr/hdp/current/kafka-broker/bin/kafka-console-consumer.sh --bootstrap-server wn0-contsk:9092 --topic click_events --from-beginning
{"userName": "Luke", "visitURL": "https://azure.microsoft.com/products/category/storage", "ts": "07/11/2023 06:39:43"}
{"userName": "Sean", "visitURL": "https://www.bing.com/new", "ts": "07/11/2023 06:39:43"}
{"userName": "XiaoMing", "visitURL": "https://hbase.apache.org", "ts": "07/11/2023 06:39:43"}
{"userName": "Machael", "visitURL": "https://www.bing.com/new", "ts": "07/11/2023 06:39:43"}
{"userName": "Andrew", "visitURL": "https://github.com", "ts": "07/11/2023 06:39:43"}
{"userName": "Zark", "visitURL": "https://kafka.apache.org", "ts": "07/11/2023 06:39:43"}
{"userName": "XiaoMing", "visitURL": "https://trino.io", "ts": "07/11/2023 06:39:43"}
{"userName": "Zark", "visitURL": "https://flink.apache.org", "ts": "07/11/2023 06:39:43"}
{"userName": "Mike", "visitURL": "https://kafka.apache.org", "ts": "07/11/2023 06:39:43"}
{"userName": "Zark", "visitURL": "https://docs.python.org", "ts": "07/11/2023 06:39:44"}
{"userName": "John", "visitURL": "https://www.bing.com/new", "ts": "07/11/2023 06:39:44"}
{"userName": "Mike", "visitURL": "https://hadoop.apache.org", "ts": "07/11/2023 06:39:44"}
{"userName": "Tim", "visitURL": "https://www.bing.com/new", "ts": "07/11/2023 06:39:44"}
.....

HDInsight kümesinde HBase tablosu oluşturma

root@hn0-contos:/home/sshuser# hbase shell
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/hdp/5.1.1.3/hadoop/lib/slf4j-reload4j-1.7.35.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/hdp/5.1.1.3/hbase/lib/client-facing-thirdparty/slf4j-reload4j-1.7.33.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Reload4jLoggerFactory]
HBase Shell
Use "help" to get list of supported commands.
Use "exit" to quit this interactive shell.
For more information, see, http://hbase.apache.org/2.0/book.html#shell
Version 2.4.11.5.1.1.3, rUnknown, Thu Apr 20 12:31:07 UTC 2023
Took 0.0032 seconds
hbase:001:0> create 'user_click_events','user_info'
Created table user_click_events
Took 5.1399 seconds
=> Hbase::Table - user_click_events
hbase:002:0>

aşağıdaki pom.xml ile maven projesi oluşturma

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>contoso.example</groupId>
    <artifactId>FlinkHbaseDemo</artifactId>
    <version>1.0-SNAPSHOT</version>
    <properties>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
        <flink.version>1.17.0</flink.version>
        <java.version>1.8</java.version>
        <scala.binary.version>2.12</scala.binary.version>
        <hbase.version>2.4.11</hbase.version>
        <kafka.version>3.2.0</kafka.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-java -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-hbase-base -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-hbase-base</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.hbase/hbase-client -->
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-client</artifactId>
            <version>${hbase.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>3.1.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-base -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-base</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-core</artifactId>
            <version>${flink.version}</version>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.0.0</version>
                <configuration>
                    <appendAssemblyId>false</appendAssemblyId>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

Kaynak kod

HBase Havuz programı yazılıyor

HBaseWriterSink

package contoso.example;

import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.util.Bytes;

public class HBaseWriterSink extends RichSinkFunction<Tuple3<String,String,String>> {
    String hbase_zk = "<update-hbasezk-ip>:2181,<update-hbasezk-ip>:2181,<update-hbasezk-ip>:2181";
    Connection hbase_conn;
    Table tb;
    int i = 0;
    @Override
    public void open(Configuration parameters) throws Exception {
        super.open(parameters);
        org.apache.hadoop.conf.Configuration hbase_conf = HBaseConfiguration.create();
        hbase_conf.set("hbase.zookeeper.quorum", hbase_zk);
        hbase_conf.set("zookeeper.znode.parent", "/hbase-unsecure");
        hbase_conn = ConnectionFactory.createConnection(hbase_conf);
        tb = hbase_conn.getTable(TableName.valueOf("user_click_events"));
    }

    @Override
    public void invoke(Tuple3<String,String,String> value, Context context) throws Exception {
        byte[] rowKey = Bytes.toBytes(String.format("%010d", i++));
        Put put = new Put(rowKey);
        put.addColumn(Bytes.toBytes("user_info"), Bytes.toBytes("userName"), Bytes.toBytes(value.f0));
        put.addColumn(Bytes.toBytes("user_info"), Bytes.toBytes("visitURL"), Bytes.toBytes(value.f1));
        put.addColumn(Bytes.toBytes("user_info"), Bytes.toBytes("ts"), Bytes.toBytes(value.f2));
        tb.put(put);
    };

    public void close() throws Exception {
        if (null != tb) tb.close();
        if (null != hbase_conn) hbase_conn.close();
    }
}

main:KafkaSinkToHbase

HBase Programına Kafka Havuzu Yazma

package contoso.example;

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.common.typeinfo.Types;

import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class KafkaSinkToHbase {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment().setParallelism(1);
        String kafka_brokers = "10.0.0.38:9092,10.0.0.39:9092,10.0.0.40:9092";

        KafkaSource<String> source = KafkaSource.<String>builder()
                .setBootstrapServers(kafka_brokers)
                .setTopics("click_events")
                .setGroupId("my-group")
                .setStartingOffsets(OffsetsInitializer.earliest())
                .setValueOnlyDeserializer(new SimpleStringSchema())
                .build();

        DataStreamSource<String> kafka = env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source").setParallelism(1);
        DataStream<Tuple3<String,String,String>> dataStream = kafka.map(line-> {
            String[] fields = line.toString().replace("{","").replace("}","").
            replace("\"","").split(",");
            Tuple3<String, String,String> tuple3 = Tuple3.of(fields[0].substring(10),fields[1].substring(11),fields[2].substring(5));
            return tuple3;
        }).returns(Types.TUPLE(Types.STRING,Types.STRING,Types.STRING));

        dataStream.addSink(new HBaseWriterSink());

        env.execute("Kafka Sink To Hbase");
    }
}

İşi Gönder

  1. İş Jar'ını Küme ile ilişkilendirilmiş Depolama Hesabına yükleyin.

    Jar dosyasının nasıl karşıya yüklendiğini gösteren ekran görüntüsü.

  2. Uygulama Modu sekmesine iş ayrıntıları ekleyin.

    Uygulama modunu gösteren ekran görüntüsü.

    Not

    Ekleyip Hadoop.class.enable classloader.resolve-order ayarladığınızdan emin olun.

  3. Günlükleri ABFS'de depolamak için İş Günlüğü Toplama'ya tıklayın.

    Web ssh'de işi göndermeyi gösteren ekran görüntüsü.

  4. İşi gönderin.

  5. İş gönderildi durumunu burada görebilmeniz gerekir.

    Flink kullanıcı arabiriminde işin nasıl denetleneceklerini gösteren ekran görüntüsü.

HBase tablo verilerini doğrulama

hbase:001:0> scan 'user_click_events',{LIMIT=>5}
ROW                                  COLUMN+CELL
0000000000                          column=user_info:ts, timestamp=2024-03-20T02:02:46.932, value=03/20/2024 02:02:43
0000000000                          column=user_info:userName, timestamp=2024-03-20T02:02:46.932, value=Pick
0000000000                          column=user_info:visitURL, timestamp=2024-03-20T02:02:46.932, value=
https://hadoop.apache.org
0000000001                          column=user_info:ts, timestamp=2024-03-20T02:02:46.991, value=03/20/2024 02:02:43
0000000001                          column=user_info:userName, timestamp=2024-03-20T02:02:46.991, value=Zheng Hu
0000000001                          column=user_info:visitURL, timestamp=2024-03-20T02:02:46.991, value=/azure/hdinsight/hdinsight-overview
0000000002                          column=user_info:ts, timestamp=2024-03-20T02:02:47.001, value=03/20/2024 02:02:43
0000000002                          column=user_info:userName, timestamp=2024-03-20T02:02:47.001, value=Sean
0000000002                          column=user_info:visitURL, timestamp=2024-03-20T02:02:47.001, value=
https://spark.apache.org
0000000003                          column=user_info:ts, timestamp=2024-03-20T02:02:47.008, value=03/20/2024 02:02:43
0000000003                          column=user_info:userName, timestamp=2024-03-20T02:02:47.008, value=Zheng Hu
0000000003                          column=user_info:visitURL, timestamp=2024-03-20T02:02:47.008, value=
https://kafka.apache.org
0000000004                          column=user_info:ts, timestamp=2024-03-20T02:02:47.017, value=03/20/2024 02:02:43
0000000004                          column=user_info:userName, timestamp=2024-03-20T02:02:47.017, value=Chunck
0000000004                          column=user_info:visitURL, timestamp=2024-03-20T02:02:47.017, value=
https://github.com
5 row(s)
Took 0.9269 seconds

Not

  • FlinkKafkaConsumer, Flink 1.17 ile kullanım dışı bırakıldı ve kaldırıldı, bunun yerine KafkaSource kullanın.
  • FlinkKafkaProducer kullanımdan kaldırıldı ve Flink 1.15 ile kaldırıldı, bunun yerine KafkaSink kullanın.

Başvurular