Aracılığıyla paylaş


IidChangePointEstimator Sınıf

Tanım

Uyarlamalı çekirdek yoğunluğu tahmini ve martingaller temelinde bağımsız bir özdeş dağıtılmış (i.i.d.) zaman serisindeki sinyal değişikliğini algılayın.

public sealed class IidChangePointEstimator : Microsoft.ML.Data.TrivialEstimator<Microsoft.ML.Transforms.TimeSeries.IidChangePointDetector>
type IidChangePointEstimator = class
    inherit TrivialEstimator<IidChangePointDetector>
Public NotInheritable Class IidChangePointEstimator
Inherits TrivialEstimator(Of IidChangePointDetector)
Devralma

Açıklamalar

Bu tahmin aracını oluşturmak için DetectIidChangePoint'i kullanın.

Giriş ve Çıkış Sütunları

Yalnızca bir giriş sütunu vardır. Giriş sütunu, bir Single değerin zaman serisindeki bir zaman damgasında bir değeri gösterdiği yer olmalıdırSingle.

4 öğe içeren bir vektör olan bir sütun üretir. Çıkış vektörünü sıralı olarak uyarı düzeyi (sıfır olmayan değer bir değişiklik noktası anlamına gelir), score, p-value ve martingale değeri içerir.

Tahmin Aracı Özellikleri

Bu tahmin aracının parametrelerini eğitmek için verilere bakması gerekiyor mu? No
Giriş sütunu veri türü Single
Çıkış sütunu veri türü 4 öğeli vektörDouble
ONNX'e aktarılabilir No

Tahmin Aracı Özellikleri

Makine öğrenmesi görevi Anormallik algılama
Normalleştirme gerekli mi? No
Önbelleğe alma gerekli mi? No
Microsoft.ML ek olarak gerekli NuGet Microsoft.ML.TimeSeries

Eğitim Algoritması Ayrıntıları

Bu eğitmen, zaman serisinde toplanan veri noktalarının aynı dağıtımdan bağımsız olarak örneklendiğini varsayar (bağımsız olarak aynı şekilde dağıtılmış). Bu nedenle, geçerli zaman damgasındaki değer, bir sonraki zaman damgasında beklenen değer olarak görüntülenebilir. $t-1$ zaman damgasında gözlemlenen değer $p$ ise, $t$ zaman damgasında tahmin edilen değer de $p$ olur.

Anomali Puanlayıcısı

Bir zaman damgasındaki ham puan hesaplandıktan sonra, o zaman damgasındaki son anomali puanını hesaplamak için anomali puanlayıcı bileşenine beslenir. Bu puanlayıcıda p değeri ve martingale puanı şeklinde iki istatistik vardır.

P değeri puanı

p değeri puanı, ham puanların dağılımına göre geçerli hesaplanan ham puanın p değerini gösterir. Burada dağıtım, geçmişteki belirli derinliklere kadar olan en son ham puan değerlerine göre tahmin edilir. Daha açık belirtmek gerekirse, bu dağılım, uyarlamalı bant genişliğine sahip Gauss çekirdekleri ile çekirdekyoğunluğu tahmini kullanılarak tahmin edilir. p değeri puanı her zaman $[0, 1]$ cinsindendir ve değeri ne kadar düşük olursa geçerli noktanın aykırı değer olma olasılığı da o kadar yüksektir (ani artış olarak da bilinir).

Martingale puanına göre değişiklik noktası algılama

Martingale puanı, p değeri puanlarının üzerine inşa edilen fazladan bir puanlama düzeyidir. Bu fikir, bir i.i.d. değerleri akışı üzerindeki dağıtım değişikliğini algılayan Exchangeability Martingales'i temel alır. Kısacası, bir satırda küçük p değerleri dizisi algılandığında martingale puanının değeri önemli ölçüde artmaya başlar; bu, temel alınan veri oluşturma işleminin dağıtım değişikliğini gösterir. Bu nedenle martingale puanı, değişiklik noktası algılama için kullanılır. En son gözlemlenen p-değerleri dizisi ($p 1, \dots, p_n$) verildiğinde martingale puanı şu şekilde hesaplanır: $s(p1, \dots, p_n) = \prod_{i=1}^n \beta(p_i)$ . İki $\beta$ seçeneği vardır: $\beta(p) = e p^{\epsilon - 1}$ için $0 < \epsilon < 1$ veya $\beta(p) = \int_{0}^1 \epsilon p^{\epsilon - 1} d\epsilon$.

Martingle puanı $q_i=1 - \frac{\text{confidence}}{100}$ olan $s(q_1, \dots, q_n)$ değerini aşarsa, ilişkili zaman damgası değişiklik noktası algılama için sıfır olmayan bir uyarı değeri alabilir. $\text{confidence}$ değerinin DetectChangePointBySsa veya DetectIidChangePoint imzalarında tanımlandığını unutmayın.

Kullanım örneklerinin bağlantıları için Ayrıca Bkz. bölümüne bakın.

Yöntemler

Fit(IDataView)

Uyarlamalı çekirdek yoğunluğu tahmini ve martingaller temelinde bağımsız bir özdeş dağıtılmış (i.i.d.) zaman serisindeki sinyal değişikliğini algılayın.

(Devralındığı yer: TrivialEstimator<TTransformer>)
GetOutputSchema(SchemaShape)

SchemaShape Transformatör tarafından üretilecek şemanın değerini döndürür. İşlem hattında şema yayma ve doğrulama için kullanılır.

Uzantı Metotları

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Tahmin zincirine 'önbelleğe alma denetim noktası' ekleme. Bu, aşağı akış tahmincilerinin önbelleğe alınan verilere karşı eğitilmesini sağlar. Birden çok veri geçiren eğitmenlerden önce bir önbelleğe alma kontrol noktası olması yararlıdır.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Tahmin aracı verildiğinde, bir temsilci çağrıldıktan sonra Fit(IDataView) çağıracak bir sarmalama nesnesi döndürün. Tahmin aracının neyin uygun olduğu hakkında bilgi döndürmesi genellikle önemlidir; bu nedenle Fit(IDataView) yöntem yalnızca genel ITransformerbir nesne yerine özel olarak yazılan bir nesne döndürür. Bununla birlikte, aynı zamanda, IEstimator<TTransformer> genellikle birçok nesne içeren işlem hatları halinde oluşturulur, bu nedenle transformatörü almak istediğimiz tahmin aracının EstimatorChain<TLastTransformer> bu zincirde bir yere gömülü olduğu bir tahmin aracı zinciri oluşturmamız gerekebilir. Bu senaryo için, bu yöntem aracılığıyla sığdır çağrıldıktan sonra çağrılacak bir temsilci ekleyebiliriz.

Şunlara uygulanır

Ayrıca bkz.