Aracılığıyla paylaş


Nasıl yapılır: parallel_invoke paralel işlemleri yürütmek için kullanın.

Bu örnek, nasıl kullanılacağını gösterir concurrency::parallel_invoke paylaşılan veri kaynağı üzerinde birden çok işlemi gerçekleştiren bir program performansını artırmak için bir algoritma.Hiçbir işlem kaynağını değiştirmek için bunlara paralel olarak basit bir şekilde çalıştırılır.

Örnek

Türünde bir değişken oluşturur aþaðýdaki kod örneði ele alalým MyDataType, bu değişkeni başlatmak için işlevini çağırır ve sonra bu verileri birden çok uzun işlemleri gerçekleştirir.

MyDataType data;
initialize_data(data);

lengthy_operation1(data);
lengthy_operation2(data);
lengthy_operation3(data);

lengthy_operation1, lengthy_operation2, Ve lengthy_operation3 işlevlerini değiştirme MyDataType değişken, bu işlevler paralel ek değişiklik olmadan çalıştırılabilir.

Aşağıdaki örnek, önceki örnekte paralel olarak çalıştırmak için değiştirir.parallel_invoke Algoritması paralel olarak görev yapar ve tüm görevler tamamlandıktan sonra verir.

MyDataType data;
initialize_data(data);

concurrency::parallel_invoke(
   [&data] { lengthy_operation1(data); },
   [&data] { lengthy_operation2(data); },
   [&data] { lengthy_operation3(data); }
);

Aşağıdaki örnek yükler Iliad tarafından gutenberg.org gelen Homer ve bu dosyayı birden çok işlemi gerçekleştirir.Örnek, ilk önce bu işlemlerin seri olarak gerçekleştirir ve paralel olarak aynı işlemleri gerçekleştirir.

// parallel-word-mining.cpp
// compile with: /EHsc /MD /DUNICODE /D_AFXDLL
#define _WIN32_WINNT 0x0501
#include <afxinet.h>
#include <ppl.h>
#include <string>
#include <iostream>
#include <vector>
#include <map>
#include <algorithm>

using namespace concurrency;
using namespace std;

// Calls the provided work function and returns the number of milliseconds 
// that it takes to call that function.
template <class Function>
__int64 time_call(Function&& f)
{
   __int64 begin = GetTickCount();
   f();
   return GetTickCount() - begin;
}

// Downloads the file at the given URL.
CString get_http_file(CInternetSession& session, const CString& url);

// Adds each word in the provided string to the provided vector of strings.
void make_word_list(const wstring& text, vector<wstring>& words);

// Finds the most common words whose length are greater than or equal to the 
// provided minimum. 
vector<pair<wstring, size_t>> find_common_words(const vector<wstring>& words, 
   size_t min_length, size_t count);

// Finds the longest sequence of words that have the same first letter.
vector<wstring> find_longest_sequence(const vector<wstring>& words);

// Finds all pairs of palindromes that appear in the provided collection
// of words.
vector<pair<wstring, wstring>> find_palindromes(const vector<wstring>& words,
   size_t min_length);

int wmain()
{  
   // Manages the network connection.
   CInternetSession session(L"Microsoft Internet Browser");

   // Download 'The Iliad' from gutenberg.org.
   wcout << L"Downloading 'The Iliad'..." << endl;
   wstring file = get_http_file(session, L"http://www.gutenberg.org/files/6130/6130-0.txt");
   wcout << endl;

   // Convert the text to a list of individual words.
   vector<wstring> words;
   make_word_list(file, words);

   // Compare the time that it takes to perform several operations on the data
   // serially and in parallel.
   __int64 elapsed;

   vector<pair<wstring, size_t>> common_words;
   vector<wstring> longest_sequence;   
   vector<pair<wstring, wstring>> palindromes;

   wcout << L"Running serial version...";
   elapsed = time_call([&] {
      common_words = find_common_words(words, 5, 9);
      longest_sequence = find_longest_sequence(words);
      palindromes = find_palindromes(words, 5);
   });
   wcout << L" took " << elapsed << L" ms." << endl;

   wcout << L"Running parallel version...";
   elapsed = time_call([&] {
      parallel_invoke(         
         [&] { common_words = find_common_words(words, 5, 9); },
         [&] { longest_sequence = find_longest_sequence(words); },
         [&] { palindromes = find_palindromes(words, 5); }
      );
   });
   wcout << L" took " << elapsed << L" ms." << endl;
   wcout << endl;

   // Print results.

   wcout << L"The most common words that have five or more letters are:" 
         << endl;
   for_each(begin(common_words), end(common_words), 
      [](const pair<wstring, size_t>& p) {
         wcout << L"   " << p.first << L" (" << p.second << L")" << endl; 
      });

   wcout << L"The longest sequence of words that have the same first letter is:" 
         << endl << L"   ";
   for_each(begin(longest_sequence), end(longest_sequence), 
      [](const wstring& s) {
         wcout << s << L' '; 
      });
   wcout << endl;

   wcout << L"The following palindromes appear in the text:" << endl;
   for_each(begin(palindromes), end(palindromes), 
      [](const pair<wstring, wstring>& p) {
         wcout << L"   "  << p.first << L" " << p.second << endl;
      });
}

// Downloads the file at the given URL.
CString get_http_file(CInternetSession& session, const CString& url)
{
   CString result;

   // Reads data from an HTTP server.
   CHttpFile* http_file = NULL;

   try
   {
      // Open URL.
      http_file = reinterpret_cast<CHttpFile*>(session.OpenURL(url, 1));

      // Read the file.
      if(http_file != NULL)
      {           
         UINT bytes_read;
         do
         {
            char buffer[10000];
            bytes_read = http_file->Read(buffer, sizeof(buffer));
            result += buffer;
         }
         while (bytes_read > 0);
      }
    }
   catch (CInternetException)
   {
      // TODO: Handle exception
   }

   // Clean up and return.
   delete http_file;

   return result;
}

// Adds each word in the provided string to the provided vector of strings.
void make_word_list(const wstring& text, vector<wstring>& words)
{
   // Add continuous sequences of alphanumeric characters to the 
   // string vector. 
   wstring current_word;
   for_each(begin(text), end(text), [&](wchar_t ch) {
      if (!iswalnum(ch))
      {
         if (current_word.length() > 0)
         {
            words.push_back(current_word);
            current_word.clear();
         }
      }
      else
      {
         current_word += ch;
      }
   });
}

// Finds the most common words whose length are greater than or equal to the 
// provided minimum. 
vector<pair<wstring, size_t>> find_common_words(const vector<wstring>& words, 
   size_t min_length, size_t count)
{
   typedef pair<wstring, size_t> pair;

   // Counts the occurrences of each word.
   map<wstring, size_t> counts;

   for_each(begin(words), end(words), [&](const wstring& word) {
      // Increment the count of words that are at least the minimum length.
      if (word.length() >= min_length)
      {
         auto find = counts.find(word);
         if (find != end(counts))
            find->second++;
         else
            counts.insert(make_pair(word, 1));
      }
   });

   // Copy the contents of the map to a vector and sort the vector by
   // the number of occurrences of each word.
   vector<pair> wordvector;
   copy(begin(counts), end(counts), back_inserter(wordvector));

   sort(begin(wordvector), end(wordvector), [](const pair& x, const pair& y) {
      return x.second > y.second;
   });

   size_t size = min(wordvector.size(), count);
   wordvector.erase(begin(wordvector) + size, end(wordvector));

   return wordvector;
}

// Finds the longest sequence of words that have the same first letter.
vector<wstring> find_longest_sequence(const vector<wstring>& words)
{
   // The current sequence of words that have the same first letter.
   vector<wstring> candidate_list;
   // The longest sequence of words that have the same first letter.
   vector<wstring> longest_run;

   for_each(begin(words), end(words), [&](const wstring& word) {
      // Initialize the candidate list if it is empty.
      if (candidate_list.size() == 0)
      {
         candidate_list.push_back(word);
      }
      // Add the word to the candidate sequence if the first letter
      // of the word is the same as each word in the sequence.
      else if (word[0] == candidate_list[0][0])
      {
         candidate_list.push_back(word);
      }
      // The initial letter has changed; reset the candidate list.
      else 
      {
         // Update the longest sequence if needed.
         if (candidate_list.size() > longest_run.size())
            longest_run = candidate_list;

         candidate_list.clear();
         candidate_list.push_back(word);         
      }
   });

   return longest_run;
}

// Finds all pairs of palindromes that appear in the provided collection
// of words.
vector<pair<wstring, wstring>> find_palindromes(const vector<wstring>& words, 
   size_t min_length)
{
   typedef pair<wstring, wstring> pair;
   vector<pair> result;

   // Copy the words to a new vector object and sort that vector.
   vector<wstring> wordvector;
   copy(begin(words), end(words), back_inserter(wordvector));
   sort(begin(wordvector), end(wordvector));

   // Add each word in the original collection to the result whose palindrome 
   // also exists in the collection. 
   for_each(begin(words), end(words), [&](const wstring& word) {
      if (word.length() >= min_length)
      {
         wstring rev = word;
         reverse(begin(rev), end(rev));

         if (rev != word && binary_search(begin(wordvector), end(wordvector), rev))
         {
            auto candidate1 = make_pair(word, rev);
            auto candidate2 = make_pair(rev, word);
            if (find(begin(result), end(result), candidate1) == end(result) &&
                find(begin(result), end(result), candidate2) == end(result))
               result.push_back(candidate1);
         }
      }
   });

   return result;
}

Bu örnek, aşağıdaki örnek çıktı oluşturur.

Downloading 'The Iliad'...

Running serial version... took 953 ms.
Running parallel version... took 656 ms.

The most common words that have five or more letters are:
   their (953)
   shall (444)
   which (431)
   great (398)
   Hector (349)
   Achilles (309)
   through (301)
   these (268)
   chief (259)
The longest sequence of words that have the same first letter is:
   through the tempest to the tented
The following palindromes appear in the text:
   spots stops
   speed deeps
   keels sleek

Bu örnek parallel_invoke birden çok arama algoritması, act aynı veri kaynağı üzerinde çalışır.Kullanabileceğiniz parallel_invoke herhangi bir işlevler kümesi değil yalnızca, aynı veriler üzerinde hareket eden paralel arama algoritması.

Çünkü parallel_invoke algoritması paralel olarak her iş işlevini çağırır, kendi performans (yani, çalýþma zamaný her işlevi ayrı işlemci işlerse) tamamlanması uzun zaman alıyor işlevi sınırlıdır.Bu örnek, kullanılabilir işlemci sayısına paralel daha fazla görevleri gerçekleştirir, birden çok görevi her işlemcide çalıştırabilirsiniz.Bu durumda performansı tamamlanması uzun zaman alıyor Grup görevleri ile sınırlıdır.

Bu örnek üç görevi paralel olarak gerçekleştirdiğinden, üçten fazla işlemciye sahip bilgisayarlarda ölçeklemek için performans beklememelisiniz.Daha fazla performansı artırmak için uzun süredir çalışan görevleri daha küçük görevlere bölün ve bu görevlerin paralel olarak çalıştır.

Kullanabileceğiniz parallel_invoke yerine algoritması concurrency::task_group ve concurrency::structured_task_group iptali için destek gerek duymuyorsanız sınıfları.Örneğin kullanımını karşılaştıran parallel_invoke karşı Görev grupları algoritması bkz: Nasıl yapılır: paralel sıralama rutin yazmak için parallel_invoke kullanın.

Kod Derleniyor

Kodu derlemek için kopyalayın ve sonra Visual Studio Project'te yapıştırın veya adlı bir dosyaya yapıştırın paralel word mining.cpp ve Visual Studio komut istemi penceresinde aşağıdaki komutu çalıştırın.

cl.exe /EHsc /MD /DUNICODE /D_AFXDLL parallel-word-mining.cpp

Ayrıca bkz.

Başvuru

parallel_invoke işlevi

Kavramlar

Paralel algoritmalar