featurizeImage:机器学习图像特征化转换
使用预先定型的深度神经网络模型使图像特征化。
用法
featurizeImage(var, outVar = NULL, dnnModel = "Resnet18")
参数
var
包含提取的像素值的输入变量。
outVar
包含图像特征的输出变量的前缀。 如果为 null,则将使用输入变量名称。 默认值是 NULL
。
dnnModel
预先定型的深度神经网络。 可能的选项包括:
"resnet18"
"resnet50"
"resnet101"
"alexnet"
默认值是"resnet18"
。 有关 ResNet 的详细信息,请参阅Deep Residual Learning for Image Recognition
。
详细信息
featurizeImage
使用指定的预先定型的深度神经网络模型使图像特征化。 此转换的输入变量必须是提取的像素值。
值
一个 maml
对象,用于定义转换。
作者
Microsoft Corporation Microsoft Technical Support
示例
train <- data.frame(Path = c(system.file("help/figures/RevolutionAnalyticslogo.png", package = "MicrosoftML")), Label = c(TRUE), stringsAsFactors = FALSE)
# Loads the images from variable Path, resizes the images to 1x1 pixels and trains a neural net.
model <- rxNeuralNet(
Label ~ Features,
data = train,
mlTransforms = list(
loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 1, height = 1, resizing = "Aniso"),
extractPixels(vars = "Features")
),
mlTransformVars = "Path",
numHiddenNodes = 1,
numIterations = 1)
# Featurizes the images from variable Path using the default model, and trains a linear model on the result.
model <- rxFastLinear(
Label ~ Features,
data = train,
mlTransforms = list(
loadImage(vars = list(Features = "Path")),
resizeImage(vars = "Features", width = 224, height = 224), # If dnnModel == "AlexNet", the image has to be resized to 227x227.
extractPixels(vars = "Features"),
featurizeImage(var = "Features")
),
mlTransformVars = "Path")