negative_binomial_distribution 类

生成负二项式分布。

语法

template<class IntType = int>
class negative_binomial_distribution
{
public:
    // types
    typedef IntType result_type;
    struct param_type;

    // constructor and reset functions
    explicit negative_binomial_distribution(result_type k = 1, double p = 0.5);
    explicit negative_binomial_distribution(const param_type& parm);
    void reset();

    // generating functions
    template `<`class URNG>
    result_type operator()(URNG& gen);
    template `<`class URNG>
    result_type operator()(URNG& gen, const param_type& parm);

    // property functions
    result_type k() const;
    double p() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
};

参数

IntType
整数结果类型,默认为 int。 有关可能的类型,请参阅 <random>

备注

如果未根据负二项式分布离散型概率函数提供和分布任何类型,则类模板将描述产生用户指定的整型类型值或 int 类型值的分布。 下表链接到有关各个成员的文章。

negative_binomial_distribution
param_type

属性成员 k()p() 将分别返回当前存储的分布参数值 k 和 p

属性成员 param() 将设置或返回 param_type 存储的分布参数包。

min()max() 成员函数将分别返回最小可能结果和最大可能结果。

reset() 成员函数将放弃所有缓存的值,使下一个对 operator() 的调用的结果不取决于在调用之前从引擎获得的任何值。

operator() 成员函数将根据 URNG 引擎,从当前参数包或指定参数包返回下一个生成的值。

有关分布类及其成员的详细信息,请参阅 <random>

有关负二项式分布离散型概率函数的详细信息,请参阅 Wolfram MathWorld 文章负二项式分步

示例

// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>

void test(const int k, const double p, const int& s) {

    // uncomment to use a non-deterministic seed
    //    std::random_device rd;
    //    std::mt19937 gen(rd());
    std::mt19937 gen(1729);

    std::negative_binomial_distribution<> distr(k, p);

    std::cout << std::endl;
    std::cout << "k == " << distr.k() << std::endl;
    std::cout << "p == " << distr.p() << std::endl;

    // generate the distribution as a histogram
    std::map<int, int> histogram;
    for (int i = 0; i < s; ++i) {
        ++histogram[distr(gen)];
    }

    // print results
    std::cout << "Histogram for " << s << " samples:" << std::endl;
    for (const auto& elem : histogram) {
        std::cout << std::setw(5) << elem.first << ' ' << std::string(elem.second, ':') << std::endl;
    }
    std::cout << std::endl;
}

int main()
{
    int    k_dist = 1;
    double p_dist = 0.5;
    int    samples = 100;

    std::cout << "Use CTRL-Z to bypass data entry and run using default values." << std::endl;
    std::cout << "Enter an integer value for k distribution (where 0 < k): ";
    std::cin >> k_dist;
    std::cout << "Enter a double value for p distribution (where 0.0 < p <= 1.0): ";
    std::cin >> p_dist;
    std::cout << "Enter an integer value for a sample count: ";
    std::cin >> samples;

    test(k_dist, p_dist, samples);
}

首次运行:

Use CTRL-Z to bypass data entry and run using default values.
Enter an integer value for k distribution (where 0 `<` k): 1
Enter a double value for p distribution (where 0.0 `<`p `<`= 1.0): .5
Enter an integer value for a sample count: 100

k == 1
p == 0.5
Histogram for 100 samples:
    0 :::::::::::::::::::::::::::::::::::::::::::
    1 ::::::::::::::::::::::::::::::::
    2 ::::::::::::
    3 :::::::
    4 ::::
    5 ::

第二次运行:

Use CTRL-Z to bypass data entry and run using default values.
Enter an integer value for k distribution (where 0 `<` k): 100
Enter a double value for p distribution (where 0.0 `<` p <= 1.0): .667
Enter an integer value for a sample count: 100

k == 100
p == 0.667
Histogram for 100 samples:
    31 ::
    32 :
    33 ::
    34 :
    35 ::
    37 ::
    38 :
    39 :
    40 ::
    41 :::
    42 :::
    43 :::::
    44 :::::
    45 ::::
    46 ::::::
    47 ::::::::
    48 :::
    49 :::
    50 :::::::::
    51 :::::::
    52 ::
    53 :::
    54 :::::
    56 ::::
    58 :
    59 :::::
    60 ::
    61 :
    62 ::
    64 :
    69 ::::

要求

标头:<random>

命名空间: std

negative_binomial_distribution::negative_binomial_distribution

构造分布。

explicit negative_binomial_distribution(result_type k = 1, double p = 0.5);
explicit negative_binomial_distribution(const param_type& parm);

参数

k
k 分布参数。

p
p 分布参数。

parm
用于构造分布的参数结构。

注解

前置条件: 0.0 < k0.0 < p ≤ 1.0

第一个构造函数将构造一个对象,该对象存储的 p 值保留值 p,并且该对象存储的 k 值保留值 k

第二个构造函数将构造一个从 parm 初始化其存储的参数的对象。 通过调用 param() 成员函数,可获取和设置当前的现有分发参数。

negative_binomial_distribution::param_type

存储分布的参数。

struct param_type { typedef negative_binomial_distribution<result_type> distribution_type; param_type(result_type k = 1, double p = 0.5); result_type k() const; double p() const;

bool operator==(const param_type& right) const; bool operator!=(const param_type& right) const; };

参数

k
k 分布参数。

p
p 分布参数。

right
用于比较的 param_type 结构。

注解

前置条件: 0.0 < k0.0 < p ≤ 1.0

在实例化时,可将此结构传递给分布的类构造函数、传递给 param() 成员函数以设置现有分布的存储参数,并传递给 operator() 以代替存储参数使用。

另请参阅

<random>