ConversionsCatalog.MapKeyToBinaryVector 方法

定义

创建一个 KeyToBinaryVectorMappingEstimator,用于将键类型转换为原始值的相应二进制表示形式。

public static Microsoft.ML.Transforms.KeyToBinaryVectorMappingEstimator MapKeyToBinaryVector (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, string inputColumnName = default);
static member MapKeyToBinaryVector : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * string -> Microsoft.ML.Transforms.KeyToBinaryVectorMappingEstimator
<Extension()>
Public Function MapKeyToBinaryVector (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing) As KeyToBinaryVectorMappingEstimator

参数

catalog
TransformsCatalog.ConversionTransforms

分类转换的目录。

outputColumnName
String

由转换 inputColumnName生成的列的名称。 数据类型是表示输入值的已知大小向量 Single

inputColumnName
String

要转换的列的名称。 If set to null, the value of the outputColumnName will be used as source. 数据类型是键或已知大小的键向量。

返回

示例

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    class MapKeyToBinaryVector
    {
        /// This example demonstrates the use of MapKeyToVector by mapping keys to
        /// floats[] of 0 and 1, representing the number in binary format.
        /// Because the ML.NET KeyType maps the missing value to zero, counting
        /// starts at 1, so the uint values converted to KeyTypes will appear
        /// skewed by one.
        /// See https://github.com/dotnet/machinelearning/blob/main/docs/code/IDataViewTypeSystem.md#key-types
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Get a small dataset as an IEnumerable.
            var rawData = new[] {
                new DataPoint() { Timeframe = 9 },
                new DataPoint() { Timeframe = 8 },
                new DataPoint() { Timeframe = 8 },
                new DataPoint() { Timeframe = 9 },
                new DataPoint() { Timeframe = 2 },
                new DataPoint() { Timeframe = 3 }
            };

            var data = mlContext.Data.LoadFromEnumerable(rawData);

            // Constructs the ML.net pipeline
            var pipeline = mlContext.Transforms.Conversion.MapKeyToBinaryVector(
                "TimeframeVector", "Timeframe");

            // Fits the pipeline to the data.
            IDataView transformedData = pipeline.Fit(data).Transform(data);

            // Getting the resulting data as an IEnumerable.
            // This will contain the newly created columns.
            IEnumerable<TransformedData> features = mlContext.Data.CreateEnumerable<
                TransformedData>(transformedData, reuseRowObject: false);

            Console.WriteLine($" Timeframe           TimeframeVector");
            foreach (var featureRow in features)
                Console.WriteLine($"{featureRow.Timeframe}\t\t\t" +
                    $"{string.Join(',', featureRow.TimeframeVector)}");

            // Timeframe             TimeframeVector
            // 10                      0,1,0,0,1 //binary representation of 9, the original value
            // 9                       0,1,0,0,0 //binary representation of 8, the original value
            // 9                       0,1,0,0,0
            // 10                      0,1,0,0,1
            // 3                       0,0,0,1,0
            // 4                       0,0,0,1,1
        }

        private class DataPoint
        {
            [KeyType(10)]
            public uint Timeframe { get; set; }

        }

        private class TransformedData : DataPoint
        {
            public float[] TimeframeVector { get; set; }
        }
    }
}

适用于