TimeSeriesCatalog.DetectSeasonality 方法
定义
重要
一些信息与预发行产品相关,相应产品在发行之前可能会进行重大修改。 对于此处提供的信息,Microsoft 不作任何明示或暗示的担保。
在时序数据中,季节性 (或周期性) 存在在特定定期间隔发生的变体,例如每周、每月或季度。
此方法通过采用四叶分析技术来检测此可预测的间隔 (或周期) 。 假设输入值具有相同的时间间隔 (,例如,按时间戳) 每秒收集的传感器数据,此方法会获取时序数据列表,并返回输入季节性数据的常规周期(如果可预测的波动或模式可以在输入值期间内递归或重复)。
如果未找到此类模式,则返回 -1,即输入值不遵循季节性波动。
public static int DetectSeasonality (this Microsoft.ML.AnomalyDetectionCatalog catalog, Microsoft.ML.IDataView input, string inputColumnName, int seasonalityWindowSize = -1, double randomnessThreshold = 0.95);
static member DetectSeasonality : Microsoft.ML.AnomalyDetectionCatalog * Microsoft.ML.IDataView * string * int * double -> int
<Extension()>
Public Function DetectSeasonality (catalog As AnomalyDetectionCatalog, input As IDataView, inputColumnName As String, Optional seasonalityWindowSize As Integer = -1, Optional randomnessThreshold As Double = 0.95) As Integer
参数
- catalog
- AnomalyDetectionCatalog
检测季节性目录。
- seasonalityWindowSize
- Int32
输入值中要考虑的值数的上限。 设置为 -1 时,使用整个输入来拟合模型;当设置为正整数时,将只考虑第一个 windowSize 值数。 默认值为 -1。
返回
输入作为季节性数据的定期间隔,否则返回 -1。
示例
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.TimeSeries;
namespace Samples.Dynamic
{
public static class DetectSeasonality
{
public static void Example()
{
/* Create a new ML context, for ML.NET operations. It can be used for
exception tracking and logging, as well as the source of randomness.*/
var mlContext = new MLContext();
// Create a seasonal data as input: y = sin(2 * Pi + x)
var seasonalData = Enumerable.Range(0, 100).Select(x => new TimeSeriesData(Math.Sin(2 * Math.PI + x)));
// Load the input data as a DataView.
var dataView = mlContext.Data.LoadFromEnumerable(seasonalData);
/* Two option parameters:
* seasonalityWindowSize: Default value is -1. When set to -1, use the whole input to fit model;
* when set to a positive integer, only the first windowSize number of values will be considered.
* randomnessThreshold: Randomness threshold that specifies how confidence the input values follows
* a predictable pattern recurring as seasonal data. By default, it is set as 0.99.
* The higher the threshold is set, the more strict recurring pattern the
* input values should follow to be determined as seasonal data.
*/
int period = mlContext.AnomalyDetection.DetectSeasonality(
dataView,
nameof(TimeSeriesData.Value),
seasonalityWindowSize: 40);
// Print the Seasonality Period result.
Console.WriteLine($"Seasonality Period: #{period}");
}
private class TimeSeriesData
{
public double Value;
public TimeSeriesData(double value)
{
Value = value;
}
}
}
}