TypeBuilder 类

在运行时定义并创建类的新实例。

**命名空间:**System.Reflection.Emit
**程序集:**mscorlib(在 mscorlib.dll 中)

语法

声明
<ClassInterfaceAttribute(ClassInterfaceType.None)> _
<ComVisibleAttribute(True)> _
Public NotInheritable Class TypeBuilder
    Inherits Type
    Implements _TypeBuilder
用法
Dim instance As TypeBuilder
[ClassInterfaceAttribute(ClassInterfaceType.None)] 
[ComVisibleAttribute(true)] 
public sealed class TypeBuilder : Type, _TypeBuilder
[ClassInterfaceAttribute(ClassInterfaceType::None)] 
[ComVisibleAttribute(true)] 
public ref class TypeBuilder sealed : public Type, _TypeBuilder
/** @attribute ClassInterfaceAttribute(ClassInterfaceType.None) */ 
/** @attribute ComVisibleAttribute(true) */ 
public final class TypeBuilder extends Type implements _TypeBuilder
ClassInterfaceAttribute(ClassInterfaceType.None) 
ComVisibleAttribute(true) 
public final class TypeBuilder extends Type implements _TypeBuilder

备注

提示

应用于此类的 HostProtectionAttribute 属性 (attribute) 具有以下 Resources 属性 (property) 值:MayLeakOnAbortHostProtectionAttribute 不影响桌面应用程序(这些应用程序通常通过双击图标、键入命令或在浏览器中输入 URL 来启动)。有关更多信息,请参见 HostProtectionAttribute 类或 SQL Server 编程和宿主保护属性

TypeBuilder 是用于控制在运行时创建动态类的根类。TypeBuilder 提供了一组用于在运行库的内部定义类、添加方法和字段以及创建类的例程。可以从动态模块创建新的 TypeBuilder

若要检索不完整类型的 Type 对象,请使用 ModuleBuilder.GetType,可用一个字符串来表示类型名称(例如“MyType”或“MyType[]”)。

示例

下面的代码示例演示了如何使用 TypeBuilder 生成一个动态类型。

Imports System
Imports System.Threading
Imports System.Reflection
Imports System.Reflection.Emit

 _


Class TestILGenerator
   
   
   Public Shared Function DynamicDotProductGen() As Type
      
      Dim ivType As Type = Nothing
      Dim ctorParams() As Type = {GetType(Integer), GetType(Integer), GetType(Integer)}
      
      Dim myDomain As AppDomain = Thread.GetDomain()
      Dim myAsmName As New AssemblyName()
      myAsmName.Name = "IntVectorAsm"
      
      Dim myAsmBuilder As AssemblyBuilder = myDomain.DefineDynamicAssembly( _
                        myAsmName, _
                        AssemblyBuilderAccess.RunAndSave)
      
      Dim IntVectorModule As ModuleBuilder = myAsmBuilder.DefineDynamicModule( _
                         "IntVectorModule", _
                         "Vector.dll")
      
      Dim ivTypeBld As TypeBuilder = IntVectorModule.DefineType("IntVector", TypeAttributes.Public)
      
      Dim xField As FieldBuilder = ivTypeBld.DefineField("x", _
                                 GetType(Integer), _
                                 FieldAttributes.Private)
      Dim yField As FieldBuilder = ivTypeBld.DefineField("y", _ 
                                 GetType(Integer), _
                                 FieldAttributes.Private)
      Dim zField As FieldBuilder = ivTypeBld.DefineField("z", _
                                 GetType(Integer), _
                                 FieldAttributes.Private)
      
      
      Dim objType As Type = Type.GetType("System.Object")
      Dim objCtor As ConstructorInfo = objType.GetConstructor(New Type() {})
      
      Dim ivCtor As ConstructorBuilder = ivTypeBld.DefineConstructor( _
                     MethodAttributes.Public, _
                     CallingConventions.Standard, _
                     ctorParams)
      Dim ctorIL As ILGenerator = ivCtor.GetILGenerator()
      ctorIL.Emit(OpCodes.Ldarg_0)
      ctorIL.Emit(OpCodes.Call, objCtor)
      ctorIL.Emit(OpCodes.Ldarg_0)
      ctorIL.Emit(OpCodes.Ldarg_1)
      ctorIL.Emit(OpCodes.Stfld, xField)
      ctorIL.Emit(OpCodes.Ldarg_0)
      ctorIL.Emit(OpCodes.Ldarg_2)
      ctorIL.Emit(OpCodes.Stfld, yField)
      ctorIL.Emit(OpCodes.Ldarg_0)
      ctorIL.Emit(OpCodes.Ldarg_3)
      ctorIL.Emit(OpCodes.Stfld, zField)
      ctorIL.Emit(OpCodes.Ret)
     

      ' Now, you'll construct the method find the dot product of two vectors. First,
      ' let's define the parameters that will be accepted by the method. In this case,
      ' it's an IntVector itself!

      Dim dpParams() As Type = {ivTypeBld}
      
      ' Here, you create a MethodBuilder containing the
      ' name, the attributes (public, static, private, and so on),
      ' the return type (int, in this case), and a array of Type
      ' indicating the type of each parameter. Since the sole parameter
      ' is a IntVector, the very class you're creating, you will
      ' pass in the TypeBuilder (which is derived from Type) instead of 
      ' a Type object for IntVector, avoiding an exception. 
      ' -- This method would be declared in VB.NET as:
      '    Public Function DotProduct(IntVector aVector) As Integer

      Dim dotProductMthd As MethodBuilder = ivTypeBld.DefineMethod("DotProduct", _
                        MethodAttributes.Public, GetType(Integer), _
                                            dpParams)
      
      ' A ILGenerator can now be spawned, attached to the MethodBuilder.
      Dim mthdIL As ILGenerator = dotProductMthd.GetILGenerator()
      
      ' Here's the body of our function, in MSIL form. We're going to find the
      ' "dot product" of the current vector instance with the passed vector 
      ' instance. For reference purposes, the equation is:
      ' (x1 * x2) + (y1 * y2) + (z1 * z2) = the dot product
      ' First, you'll load the reference to the current instance "this"
      ' stored in argument 0 (ldarg.0) onto the stack. Ldfld, the subsequent
      ' instruction, will pop the reference off the stack and look up the
      ' field "x", specified by the FieldInfo token "xField".
      mthdIL.Emit(OpCodes.Ldarg_0)
      mthdIL.Emit(OpCodes.Ldfld, xField)
      
      ' That completed, the value stored at field "x" is now atop the stack.
      ' Now, you'll do the same for the object reference we passed as a
      ' parameter, stored in argument 1 (ldarg.1). After Ldfld executed,
      ' you'll have the value stored in field "x" for the passed instance
      ' atop the stack.
      mthdIL.Emit(OpCodes.Ldarg_1)
      mthdIL.Emit(OpCodes.Ldfld, xField)
      
      ' There will now be two values atop the stack - the "x" value for the
      ' current vector instance, and the "x" value for the passed instance.
      ' You'll now multiply them, and push the result onto the evaluation stack.
      mthdIL.Emit(OpCodes.Mul_Ovf_Un)
      
      ' Now, repeat this for the "y" fields of both vectors.
      mthdIL.Emit(OpCodes.Ldarg_0)
      mthdIL.Emit(OpCodes.Ldfld, yField)
      mthdIL.Emit(OpCodes.Ldarg_1)
      mthdIL.Emit(OpCodes.Ldfld, yField)
      mthdIL.Emit(OpCodes.Mul_Ovf_Un)
      
      ' At this time, the results of both multiplications should be atop
      ' the stack. You'll now add them and push the result onto the stack.
      mthdIL.Emit(OpCodes.Add_Ovf_Un)
      
      ' Multiply both "z" field and push the result onto the stack.
      mthdIL.Emit(OpCodes.Ldarg_0)
      mthdIL.Emit(OpCodes.Ldfld, zField)
      mthdIL.Emit(OpCodes.Ldarg_1)
      mthdIL.Emit(OpCodes.Ldfld, zField)
      mthdIL.Emit(OpCodes.Mul_Ovf_Un)
      
      ' Finally, add the result of multiplying the "z" fields with the
      ' result of the earlier addition, and push the result - the dot product -
      ' onto the stack.
      mthdIL.Emit(OpCodes.Add_Ovf_Un)
      
      ' The "ret" opcode will pop the last value from the stack and return it
      ' to the calling method. You're all done!
      mthdIL.Emit(OpCodes.Ret)
      
      
      ivType = ivTypeBld.CreateType()
      
      Return ivType
   End Function 'DynamicDotProductGen
    
   
   Public Shared Sub Main()
      
      Dim IVType As Type = Nothing
      Dim aVector1 As Object = Nothing
      Dim aVector2 As Object = Nothing
      Dim aVtypes() As Type = {GetType(Integer), GetType(Integer), GetType(Integer)}
      Dim aVargs1() As Object = {10, 10, 10}
      Dim aVargs2() As Object = {20, 20, 20}
      
      ' Call the  method to build our dynamic class.
      IVType = DynamicDotProductGen()
      
      
      Dim myDTctor As ConstructorInfo = IVType.GetConstructor(aVtypes)
      aVector1 = myDTctor.Invoke(aVargs1)
      aVector2 = myDTctor.Invoke(aVargs2)
      
      Console.WriteLine("---")
      Dim passMe(0) As Object
      passMe(0) = CType(aVector2, Object)
      
      Console.WriteLine("(10, 10, 10) . (20, 20, 20) = {0}", _
                        IVType.InvokeMember("DotProduct", BindingFlags.InvokeMethod, _
                        Nothing, aVector1, passMe))
   End Sub 'Main
End Class 'TestILGenerator



' +++ OUTPUT +++
' ---
' (10, 10, 10) . (20, 20, 20) = 600 

using System;
using System.Threading;
using System.Reflection;
using System.Reflection.Emit;


class TestILGenerator {
 
    public static Type DynamicDotProductGen() {
      
       Type ivType = null;
       Type[] ctorParams = new Type[] { typeof(int),
                                typeof(int),
                        typeof(int)};
    
       AppDomain myDomain = Thread.GetDomain();
       AssemblyName myAsmName = new AssemblyName();
       myAsmName.Name = "IntVectorAsm";
    
       AssemblyBuilder myAsmBuilder = myDomain.DefineDynamicAssembly(
                      myAsmName, 
                      AssemblyBuilderAccess.RunAndSave);

       ModuleBuilder IntVectorModule = myAsmBuilder.DefineDynamicModule("IntVectorModule",
                                        "Vector.dll");

       TypeBuilder ivTypeBld = IntVectorModule.DefineType("IntVector",
                                      TypeAttributes.Public);

       FieldBuilder xField = ivTypeBld.DefineField("x", typeof(int),
                                                       FieldAttributes.Private);
       FieldBuilder yField = ivTypeBld.DefineField("y", typeof(int), 
                                                       FieldAttributes.Private);
       FieldBuilder zField = ivTypeBld.DefineField("z", typeof(int),
                                                       FieldAttributes.Private);


           Type objType = Type.GetType("System.Object"); 
           ConstructorInfo objCtor = objType.GetConstructor(new Type[0]);

       ConstructorBuilder ivCtor = ivTypeBld.DefineConstructor(
                      MethodAttributes.Public,
                      CallingConventions.Standard,
                      ctorParams);
       ILGenerator ctorIL = ivCtor.GetILGenerator();
           ctorIL.Emit(OpCodes.Ldarg_0);
           ctorIL.Emit(OpCodes.Call, objCtor);
           ctorIL.Emit(OpCodes.Ldarg_0);
           ctorIL.Emit(OpCodes.Ldarg_1);
           ctorIL.Emit(OpCodes.Stfld, xField); 
           ctorIL.Emit(OpCodes.Ldarg_0);
           ctorIL.Emit(OpCodes.Ldarg_2);
           ctorIL.Emit(OpCodes.Stfld, yField); 
           ctorIL.Emit(OpCodes.Ldarg_0);
           ctorIL.Emit(OpCodes.Ldarg_3);
           ctorIL.Emit(OpCodes.Stfld, zField); 
       ctorIL.Emit(OpCodes.Ret); 


       // This method will find the dot product of the stored vector
       // with another.

       Type[] dpParams = new Type[] { ivTypeBld };

           // Here, you create a MethodBuilder containing the
       // name, the attributes (public, static, private, and so on),
       // the return type (int, in this case), and a array of Type
       // indicating the type of each parameter. Since the sole parameter
       // is a IntVector, the very class you're creating, you will
       // pass in the TypeBuilder (which is derived from Type) instead of 
       // a Type object for IntVector, avoiding an exception. 

       // -- This method would be declared in C# as:
       //    public int DotProduct(IntVector aVector)

           MethodBuilder dotProductMthd = ivTypeBld.DefineMethod(
                                  "DotProduct", 
                          MethodAttributes.Public,
                                          typeof(int), 
                                          dpParams);

       // A ILGenerator can now be spawned, attached to the MethodBuilder.

       ILGenerator mthdIL = dotProductMthd.GetILGenerator();
       
       // Here's the body of our function, in MSIL form. We're going to find the
       // "dot product" of the current vector instance with the passed vector 
       // instance. For reference purposes, the equation is:
       // (x1 * x2) + (y1 * y2) + (z1 * z2) = the dot product

       // First, you'll load the reference to the current instance "this"
       // stored in argument 0 (ldarg.0) onto the stack. Ldfld, the subsequent
       // instruction, will pop the reference off the stack and look up the
       // field "x", specified by the FieldInfo token "xField".

       mthdIL.Emit(OpCodes.Ldarg_0);
       mthdIL.Emit(OpCodes.Ldfld, xField);

       // That completed, the value stored at field "x" is now atop the stack.
       // Now, you'll do the same for the object reference we passed as a
       // parameter, stored in argument 1 (ldarg.1). After Ldfld executed,
       // you'll have the value stored in field "x" for the passed instance
       // atop the stack.

       mthdIL.Emit(OpCodes.Ldarg_1);
       mthdIL.Emit(OpCodes.Ldfld, xField);

           // There will now be two values atop the stack - the "x" value for the
       // current vector instance, and the "x" value for the passed instance.
       // You'll now multiply them, and push the result onto the evaluation stack.

       mthdIL.Emit(OpCodes.Mul_Ovf_Un);

       // Now, repeat this for the "y" fields of both vectors.

       mthdIL.Emit(OpCodes.Ldarg_0);
       mthdIL.Emit(OpCodes.Ldfld, yField);
       mthdIL.Emit(OpCodes.Ldarg_1);
       mthdIL.Emit(OpCodes.Ldfld, yField);
       mthdIL.Emit(OpCodes.Mul_Ovf_Un);

       // At this time, the results of both multiplications should be atop
       // the stack. You'll now add them and push the result onto the stack.

       mthdIL.Emit(OpCodes.Add_Ovf_Un);

       // Multiply both "z" field and push the result onto the stack.
       mthdIL.Emit(OpCodes.Ldarg_0);
       mthdIL.Emit(OpCodes.Ldfld, zField);
       mthdIL.Emit(OpCodes.Ldarg_1);
       mthdIL.Emit(OpCodes.Ldfld, zField);
       mthdIL.Emit(OpCodes.Mul_Ovf_Un);

       // Finally, add the result of multiplying the "z" fields with the
       // result of the earlier addition, and push the result - the dot product -
       // onto the stack.
       mthdIL.Emit(OpCodes.Add_Ovf_Un);

       // The "ret" opcode will pop the last value from the stack and return it
       // to the calling method. You're all done!

       mthdIL.Emit(OpCodes.Ret);


       ivType = ivTypeBld.CreateType();

       return ivType;

    }

    public static void Main() {
    
       Type IVType = null;
           object aVector1 = null;
           object aVector2 = null;
       Type[] aVtypes = new Type[] {typeof(int), typeof(int), typeof(int)};
           object[] aVargs1 = new object[] {10, 10, 10};
           object[] aVargs2 = new object[] {20, 20, 20};
    
       // Call the  method to build our dynamic class.

       IVType = DynamicDotProductGen();

           Console.WriteLine("---");

       ConstructorInfo myDTctor = IVType.GetConstructor(aVtypes);
       aVector1 = myDTctor.Invoke(aVargs1);
       aVector2 = myDTctor.Invoke(aVargs2);

       object[] passMe = new object[1];
           passMe[0] = (object)aVector2; 

       Console.WriteLine("(10, 10, 10) . (20, 20, 20) = {0}",
                 IVType.InvokeMember("DotProduct",
                          BindingFlags.InvokeMethod,
                          null,
                          aVector1,
                          passMe));

        

       // +++ OUTPUT +++
       // ---
       // (10, 10, 10) . (20, 20, 20) = 600 
        
    }
    
}
using namespace System;
using namespace System::Threading;
using namespace System::Reflection;
using namespace System::Reflection::Emit;
Type^ DynamicDotProductGen()
{
   Type^ ivType = nullptr;
   array<Type^>^temp0 = {int::typeid,int::typeid,int::typeid};
   array<Type^>^ctorParams = temp0;
   AppDomain^ myDomain = Thread::GetDomain();
   AssemblyName^ myAsmName = gcnew AssemblyName;
   myAsmName->Name = "IntVectorAsm";
   AssemblyBuilder^ myAsmBuilder = myDomain->DefineDynamicAssembly( myAsmName, AssemblyBuilderAccess::RunAndSave );
   ModuleBuilder^ IntVectorModule = myAsmBuilder->DefineDynamicModule( "IntVectorModule", "Vector.dll" );
   TypeBuilder^ ivTypeBld = IntVectorModule->DefineType( "IntVector", TypeAttributes::Public );
   FieldBuilder^ xField = ivTypeBld->DefineField( "x", int::typeid, FieldAttributes::Private );
   FieldBuilder^ yField = ivTypeBld->DefineField( "y", int::typeid, FieldAttributes::Private );
   FieldBuilder^ zField = ivTypeBld->DefineField( "z", int::typeid, FieldAttributes::Private );
   Type^ objType = Type::GetType( "System.Object" );
   ConstructorInfo^ objCtor = objType->GetConstructor( gcnew array<Type^>(0) );
   ConstructorBuilder^ ivCtor = ivTypeBld->DefineConstructor( MethodAttributes::Public, CallingConventions::Standard, ctorParams );
   ILGenerator^ ctorIL = ivCtor->GetILGenerator();
   ctorIL->Emit( OpCodes::Ldarg_0 );
   ctorIL->Emit( OpCodes::Call, objCtor );
   ctorIL->Emit( OpCodes::Ldarg_0 );
   ctorIL->Emit( OpCodes::Ldarg_1 );
   ctorIL->Emit( OpCodes::Stfld, xField );
   ctorIL->Emit( OpCodes::Ldarg_0 );
   ctorIL->Emit( OpCodes::Ldarg_2 );
   ctorIL->Emit( OpCodes::Stfld, yField );
   ctorIL->Emit( OpCodes::Ldarg_0 );
   ctorIL->Emit( OpCodes::Ldarg_3 );
   ctorIL->Emit( OpCodes::Stfld, zField );
   ctorIL->Emit( OpCodes::Ret );
   
   // This method will find the dot product of the stored vector
   // with another.
   array<Type^>^temp1 = {ivTypeBld};
   array<Type^>^dpParams = temp1;
   
   // Here, you create a MethodBuilder containing the
   // name, the attributes (public, static, private, and so on),
   // the return type (int, in this case), and a array of Type
   // indicating the type of each parameter. Since the sole parameter
   // is a IntVector, the very class you're creating, you will
   // pass in the TypeBuilder (which is derived from Type) instead of
   // a Type object for IntVector, avoiding an exception.
   // -- This method would be declared in C# as:
   //    public int DotProduct(IntVector aVector)
   MethodBuilder^ dotProductMthd = ivTypeBld->DefineMethod( "DotProduct", MethodAttributes::Public, int::typeid, dpParams );
   
   // A ILGenerator can now be spawned, attached to the MethodBuilder.
   ILGenerator^ mthdIL = dotProductMthd->GetILGenerator();
   
   // Here's the body of our function, in MSIL form. We're going to find the
   // "dot product" of the current vector instance with the passed vector
   // instance. For reference purposes, the equation is:
   // (x1 * x2) + (y1 * y2) + (z1 * z2) = the dot product
   // First, you'll load the reference to the current instance "this"
   // stored in argument 0 (ldarg.0) onto the stack. Ldfld, the subsequent
   // instruction, will pop the reference off the stack and look up the
   // field "x", specified by the FieldInfo token "xField".
   mthdIL->Emit( OpCodes::Ldarg_0 );
   mthdIL->Emit( OpCodes::Ldfld, xField );
   
   // That completed, the value stored at field "x" is now atop the stack.
   // Now, you'll do the same for the Object reference we passed as a
   // parameter, stored in argument 1 (ldarg.1). After Ldfld executed,
   // you'll have the value stored in field "x" for the passed instance
   // atop the stack.
   mthdIL->Emit( OpCodes::Ldarg_1 );
   mthdIL->Emit( OpCodes::Ldfld, xField );
   
   // There will now be two values atop the stack - the "x" value for the
   // current vector instance, and the "x" value for the passed instance.
   // You'll now multiply them, and push the result onto the evaluation stack.
   mthdIL->Emit( OpCodes::Mul_Ovf_Un );
   
   // Now, repeat this for the "y" fields of both vectors.
   mthdIL->Emit( OpCodes::Ldarg_0 );
   mthdIL->Emit( OpCodes::Ldfld, yField );
   mthdIL->Emit( OpCodes::Ldarg_1 );
   mthdIL->Emit( OpCodes::Ldfld, yField );
   mthdIL->Emit( OpCodes::Mul_Ovf_Un );
   
   // At this time, the results of both multiplications should be atop
   // the stack. You'll now add them and push the result onto the stack.
   mthdIL->Emit( OpCodes::Add_Ovf_Un );
   
   // Multiply both "z" field and push the result onto the stack.
   mthdIL->Emit( OpCodes::Ldarg_0 );
   mthdIL->Emit( OpCodes::Ldfld, zField );
   mthdIL->Emit( OpCodes::Ldarg_1 );
   mthdIL->Emit( OpCodes::Ldfld, zField );
   mthdIL->Emit( OpCodes::Mul_Ovf_Un );
   
   // Finally, add the result of multiplying the "z" fields with the
   // result of the earlier addition, and push the result - the dot product -
   // onto the stack.
   mthdIL->Emit( OpCodes::Add_Ovf_Un );
   
   // The "ret" opcode will pop the last value from the stack and return it
   // to the calling method. You're all done!
   mthdIL->Emit( OpCodes::Ret );
   ivType = ivTypeBld->CreateType();
   return ivType;
}

int main()
{
   Type^ IVType = nullptr;
   Object^ aVector1 = nullptr;
   Object^ aVector2 = nullptr;
   array<Type^>^temp2 = {int::typeid,int::typeid,int::typeid};
   array<Type^>^aVtypes = temp2;
   array<Object^>^temp3 = {10,10,10};
   array<Object^>^aVargs1 = temp3;
   array<Object^>^temp4 = {20,20,20};
   array<Object^>^aVargs2 = temp4;
   
   // Call the  method to build our dynamic class.
   IVType = DynamicDotProductGen();
   Console::WriteLine( "---" );
   ConstructorInfo^ myDTctor = IVType->GetConstructor( aVtypes );
   aVector1 = myDTctor->Invoke( aVargs1 );
   aVector2 = myDTctor->Invoke( aVargs2 );
   array<Object^>^passMe = gcnew array<Object^>(1);
   passMe[ 0 ] = dynamic_cast<Object^>(aVector2);
   Console::WriteLine( "(10, 10, 10) . (20, 20, 20) = {0}", IVType->InvokeMember( "DotProduct", BindingFlags::InvokeMethod, nullptr, aVector1, passMe ) );
}

// +++ OUTPUT +++
// ---
// (10, 10, 10) . (20, 20, 20) = 600
import System.*;
import System.Threading.*;
import System.Reflection.*;
import System.Reflection.Emit.*;

class TestILGenerator
{
   public static Type DynamicDotProductGen() 
   {
        Type ivType = null;
        Type ctorParams[] = new Type[]{int.class.ToType(),
            int.class.ToType(), int.class.ToType()};

        AppDomain myDomain = System.Threading.Thread.GetDomain();
        AssemblyName myAsmName =  new AssemblyName();
        myAsmName.set_Name("IntVectorAsm");

        AssemblyBuilder myAsmBuilder = myDomain.DefineDynamicAssembly
            (myAsmName, AssemblyBuilderAccess.RunAndSave);

        ModuleBuilder IntVectorModule = myAsmBuilder.DefineDynamicModule
            ("IntVectorModule", "Vector.dll");

        TypeBuilder ivTypeBld = IntVectorModule.DefineType("IntVector",
            TypeAttributes.Public);

        FieldBuilder xField = ivTypeBld.DefineField("x",
            int.class.ToType(), FieldAttributes.Private);
        FieldBuilder yField = ivTypeBld.DefineField("y",
            int.class.ToType(), FieldAttributes.Private);
        FieldBuilder zField = ivTypeBld.DefineField("z",
            int.class.ToType(), FieldAttributes.Private);

        Type objType = Type.GetType("System.Object");
        ConstructorInfo objCtor = objType.GetConstructor(new Type[0]);
        ConstructorBuilder ivCtor = 
            ivTypeBld.DefineConstructor(MethodAttributes.Public,
            CallingConventions.Standard, ctorParams);

        ILGenerator ctorIL = ivCtor.GetILGenerator();

        ctorIL.Emit(OpCodes.Ldarg_0);
        ctorIL.Emit(OpCodes.Call, objCtor);
        ctorIL.Emit(OpCodes.Ldarg_0);
        ctorIL.Emit(OpCodes.Ldarg_1);
        ctorIL.Emit(OpCodes.Stfld, xField);
        ctorIL.Emit(OpCodes.Ldarg_0);
        ctorIL.Emit(OpCodes.Ldarg_2);
        ctorIL.Emit(OpCodes.Stfld, yField);
        ctorIL.Emit(OpCodes.Ldarg_0);
        ctorIL.Emit(OpCodes.Ldarg_3);
        ctorIL.Emit(OpCodes.Stfld, zField);
        ctorIL.Emit(OpCodes.Ret);
      
        // This method will find the dot product of the stored vector
        // with another.
        Type dpParams[] = new Type[]{ivTypeBld};
              
        // Here, you create a MethodBuilder containing the
        // name, the attributes (public, static, private, and so on),
        // the return type (int, in this case), and a array of Type
        // indicating the type of each parameter. Since the sole parameter
        // is a IntVector, the very class you're creating, you will
        // pass in the TypeBuilder (which is derived from Type) instead of 
        // a Type object for IntVector, avoiding an exception. 
        // -- This method would be declared in VJ# as:
        //    public int DotProduct(IntVector aVector)
        MethodBuilder dotProductMthd = ivTypeBld.DefineMethod("DotProduct",
            MethodAttributes.Public, int .class.ToType(), dpParams);
              
        // A ILGenerator can now be spawned, attached to the MethodBuilder.
        ILGenerator mthdIL = dotProductMthd.GetILGenerator();
              
        // Here's the body of our function, in MSIL form. We're going to 
        // find the "dot product" of the current vector instance with the 
        // passed vector instance. For reference purposes, the equation is:
        // (x1 * x2) + (y1 * y2) + (z1 * z2) = the dot product
        // First, you'll load the reference to the current instance "this"
        // stored in argument 0 (ldarg.0) onto the stack. Ldfld, the 
        // subsequent instruction, will pop the reference off the stack and 
        // look up the field "x",specified by the FieldInfo token "xField".
        mthdIL.Emit(OpCodes.Ldarg_0);
        mthdIL.Emit(OpCodes.Ldfld, xField);
      
        // That completed, the value stored at field "x" is now atop the 
        // stack.Now, you'll do the same for the object reference we passed 
        // as a parameter, stored in argument 1 (ldarg.1). After Ldfld 
        // executed,you'll have the value stored in field "x" for the 
        // passed instance atop the stack.
        mthdIL.Emit(OpCodes.Ldarg_1);
        mthdIL.Emit(OpCodes.Ldfld, xField);
              
        // There will now be two values atop the stack - the "x" value for 
        // the current vector instance, and the "x" value for the passed 
        // instance.You'll now multiply them, and push the result onto the
        // evaluation stack.
        mthdIL.Emit(OpCodes.Mul_Ovf_Un);
            
        // Now, repeat this for the "y" fields of both vectors.
        mthdIL.Emit(OpCodes.Ldarg_0);
        mthdIL.Emit(OpCodes.Ldfld, yField);
        mthdIL.Emit(OpCodes.Ldarg_1);
        mthdIL.Emit(OpCodes.Ldfld, yField);
        mthdIL.Emit(OpCodes.Mul_Ovf_Un);
            
        // At this time, the results of both multiplications should be atop
        // the stack. You'll now add them and push the result
        // onto the stack.
        mthdIL.Emit(OpCodes.Add_Ovf_Un);
            
        // Multiply both "z" field and push the result onto the stack.
        mthdIL.Emit(OpCodes.Ldarg_0);
        mthdIL.Emit(OpCodes.Ldfld, zField);
        mthdIL.Emit(OpCodes.Ldarg_1);
        mthdIL.Emit(OpCodes.Ldfld, zField);
        mthdIL.Emit(OpCodes.Mul_Ovf_Un);
            
        // Finally, add the result of multiplying the "z" fields with the
        // result of the earlier addition, and push the result 
        // - the dot product - onto the stack.
        mthdIL.Emit(OpCodes.Add_Ovf_Un);
        // The "ret" opcode will pop the last value from the stack and 
        // return it to the calling method. You're all done!
        mthdIL.Emit(OpCodes.Ret);
        ivType = ivTypeBld.CreateType();
        return ivType ;
   } //DynamicDotProductGen
     
    public static void main(String[] args)
    {
        Type ivType = null;
        Object aVector1 = null;
        Object aVector2 = null;
        Type aVtypes[] = new Type[] {
            int.class.ToType(), int.class.ToType(), int.class.ToType()};
        Object aVargs1[] = new Object[] { (Int32)10, (Int32)10, (Int32)10};
        Object aVargs2[] = new Object[] { (Int32)20, (Int32)20, (Int32)20};

        // Call the  method to build our dynamic class.
        ivType = DynamicDotProductGen();
        Console.WriteLine("---");
        ConstructorInfo myDTctor = ivType.GetConstructor(aVtypes);
        aVector1 = myDTctor.Invoke(aVargs1);
        aVector2 = myDTctor.Invoke(aVargs2);
        Object passMe[] = new Object[1];
        passMe.set_Item(0, ((Object)(aVector2)));
        Console.WriteLine("(10, 10, 10) . (20, 20, 20) = {0}",
            ivType.InvokeMember("DotProduct", BindingFlags.InvokeMethod,
            null, aVector1, passMe));
    } //main
} //TestILGenerator
// +++ OUTPUT +++
// ---
// (10, 10, 10) . (20, 20, 20) = 600 

继承层次结构

System.Object
   System.Reflection.MemberInfo
     System.Type
      System.Reflection.Emit.TypeBuilder

线程安全

此类型的任何公共静态(Visual Basic 中的 Shared)成员都是线程安全的,但不保证所有实例成员都是线程安全的。

平台

Windows 98、Windows 2000 SP4、Windows Millennium Edition、Windows Server 2003、Windows XP Media Center Edition、Windows XP Professional x64 Edition、Windows XP SP2、Windows XP Starter Edition

.NET Framework 并不是对每个平台的所有版本都提供支持。有关受支持版本的列表,请参见系统要求

版本信息

.NET Framework

受以下版本支持:2.0、1.1、1.0

请参见

参考

TypeBuilder 成员
System.Reflection.Emit 命名空间

其他资源

用反射发出定义类型
如何:定义具有反射发出的泛型类型