abs
计算复数的模数。
template<class Type>
Type abs(
const complex<Type>& _ComplexNum
);
参数
- _ComplexNum
将放置模数的复数。
返回值
复数的模数。
备注
复数的 模数 是矢量长度的度量值且表示复数的。 复数 a + bi 的模数是 sqrt (a2 + b2),为 |a + bi|。 复数 a + bi 的 准则 是 (a2 + b2),因此,它是的模数其范数平方根。
示例
// complex_abs.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
// Complex numbers can be entered in polar form with
// modulus and argument parameter inputs but are
// stored in Cartesian form as real & imag coordinates
complex <double> c1 ( polar ( 5.0 ) ); // Default argument = 0
complex <double> c2 ( polar ( 5.0 , pi / 6 ) );
complex <double> c3 ( polar ( 5.0 , 13 * pi / 6 ) );
cout << "c1 = polar ( 5.0 ) = " << c1 << endl;
cout << "c2 = polar ( 5.0 , pi / 6 ) = " << c2 << endl;
cout << "c3 = polar ( 5.0 , 13 * pi / 6 ) = " << c3 << endl;
// The modulus and argument of a complex number can be recovered
// using abs & arg member functions
double absc1 = abs ( c1 );
double argc1 = arg ( c1 );
cout << "The modulus of c1 is recovered from c1 using: abs ( c1 ) = "
<< absc1 << endl;
cout << "Argument of c1 is recovered from c1 using:\n arg ( c1 ) = "
<< argc1 << " radians, which is " << argc1 * 180 / pi
<< " degrees." << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is recovered from c2 using: abs ( c2 ) = "
<< absc2 << endl;
cout << "Argument of c2 is recovered from c2 using:\n arg ( c2 ) = "
<< argc2 << " radians, which is " << argc2 * 180 / pi
<< " degrees." << endl;
// Testing if the principal angles of c2 and c3 are the same
if ( (arg ( c2 ) <= ( arg ( c3 ) + .00000001) ) ||
(arg ( c2 ) >= ( arg ( c3 ) - .00000001) ) )
cout << "The complex numbers c2 & c3 have the "
<< "same principal arguments."<< endl;
else
cout << "The complex numbers c2 & c3 don't have the "
<< "same principal arguments." << endl;
}
要求
复杂页眉: <>
命名空间: std