分享方式:


minCount:特徵選取計數模式

特徵選取項目轉換 selectFeatures 中使用的特徵選取計數模式。

使用方式

  minCount(count = 1, ...)

引數

count

計數型特徵選取的閾值。 只有在特徵中至少 count 個範例有非預設值時,才會選取該特徵。 預設值為 1。

...

要直接傳遞至 Microsoft Compute Engine 的其他引數。

詳細資料

在特徵選取轉換中使用計數模式時,如果特徵中的範例數目至少有指定的非預設值計數範例,便會選取該特徵。 與類別雜湊轉換一起套用時,計數模式特徵選取轉換很有用 (另請參閱 categoricalHash。 計數特徵選取可以移除由雜湊轉換產生且在範例中沒有資料的特徵。

定義計數模式的字元字串。

作者

Microsoft Corporation Microsoft Technical Support

另請參閱

mutualInformation selectFeatures

範例


 trainReviews <- data.frame(review = c( 
         "This is great",
         "I hate it",
         "Love it",
         "Do not like it",
         "Really like it",
         "I hate it",
         "I like it a lot",
         "I kind of hate it",
         "I do like it",
         "I really hate it",
         "It is very good",
         "I hate it a bunch",
         "I love it a bunch",
         "I hate it",
         "I like it very much",
         "I hate it very much.",
         "I really do love it",
         "I really do hate it",
         "Love it!",
         "Hate it!",
         "I love it",
         "I hate it",
         "I love it",
         "I hate it",
         "I love it"),
      like = c(TRUE, FALSE, TRUE, FALSE, TRUE,
         FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE,
         FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, 
         FALSE, TRUE, FALSE, TRUE), stringsAsFactors = FALSE
     )

     testReviews <- data.frame(review = c(
         "This is great",
         "I hate it",
         "Love it",
         "Really like it",
         "I hate it",
         "I like it a lot",
         "I love it",
         "I do like it",
         "I really hate it",
         "I love it"), stringsAsFactors = FALSE)

 # Use a categorical hash transform which generated 128 features.
 outModel1 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, l1Weight = 0, 
     mlTransforms = list(categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7)))
 summary(outModel1)

 # Apply a categorical hash transform and a count feature selection transform
 # which selects only those hash features that has value.
 outModel2 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, l1Weight = 0, 
     mlTransforms = list(
   categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7), 
   selectFeatures("reviewCatHash", mode = minCount())))
 summary(outModel2)

 # Apply a categorical hash transform and a mutual information feature selection transform
 # which selects those features appearing with at least a count of 5.
 outModel3 <- rxLogisticRegression(like~reviewCatHash, data = trainReviews, l1Weight = 0, 
     mlTransforms = list(
   categoricalHash(vars = c(reviewCatHash = "review"), hashBits = 7), 
   selectFeatures("reviewCatHash", mode = minCount(count = 5))))
 summary(outModel3)