本教學課程說明如何將函數工具新增至 AG-UI 代理程式。 函數工具是自訂 C# 方法,代理程式可以呼叫這些方法來執行特定任務,例如擷取資料、執行計算或與外部系統互動。 使用 AG-UI,這些工具在後端執行,其結果會自動串流到用戶端。
先決條件
開始之前,請確定您已完成快速 入門 教學課程,並具備:
- .NET 8.0 或更新版本
-
Microsoft.Agents.AI.Hosting.AGUI.AspNetCore已安裝套件 - 已設定的 Azure OpenAI 服務
- 對 AG-UI 伺服器和用戶端設定的基本了解
什麼是後端工具渲染?
後端工具渲染意味著:
- 功能工具在伺服器上定義
- AI 代理決定何時呼叫這些工具
- 工具在後端(伺服器端)執行
- 工具調用事件和結果實時流式傳輸到客戶端
- 用戶端會收到有關工具執行進度的更新
使用函數工具建立 AG-UI 伺服器
這是一個完整的伺服器實作,示範如何註冊具有複雜參數類型的工具:
// Copyright (c) Microsoft. All rights reserved.
using System.ComponentModel;
using System.Text.Json.Serialization;
using Azure.AI.OpenAI;
using Azure.Identity;
using Microsoft.Agents.AI;
using Microsoft.Agents.AI.Hosting.AGUI.AspNetCore;
using Microsoft.Extensions.AI;
using Microsoft.Extensions.Options;
using OpenAI.Chat;
WebApplicationBuilder builder = WebApplication.CreateBuilder(args);
builder.Services.AddHttpClient().AddLogging();
builder.Services.ConfigureHttpJsonOptions(options =>
options.SerializerOptions.TypeInfoResolverChain.Add(SampleJsonSerializerContext.Default));
builder.Services.AddAGUI();
WebApplication app = builder.Build();
string endpoint = builder.Configuration["AZURE_OPENAI_ENDPOINT"]
?? throw new InvalidOperationException("AZURE_OPENAI_ENDPOINT is not set.");
string deploymentName = builder.Configuration["AZURE_OPENAI_DEPLOYMENT_NAME"]
?? throw new InvalidOperationException("AZURE_OPENAI_DEPLOYMENT_NAME is not set.");
// Define request/response types for the tool
internal sealed class RestaurantSearchRequest
{
public string Location { get; set; } = string.Empty;
public string Cuisine { get; set; } = "any";
}
internal sealed class RestaurantSearchResponse
{
public string Location { get; set; } = string.Empty;
public string Cuisine { get; set; } = string.Empty;
public RestaurantInfo[] Results { get; set; } = [];
}
internal sealed class RestaurantInfo
{
public string Name { get; set; } = string.Empty;
public string Cuisine { get; set; } = string.Empty;
public double Rating { get; set; }
public string Address { get; set; } = string.Empty;
}
// JSON serialization context for source generation
[JsonSerializable(typeof(RestaurantSearchRequest))]
[JsonSerializable(typeof(RestaurantSearchResponse))]
internal sealed partial class SampleJsonSerializerContext : JsonSerializerContext;
// Define the function tool
[Description("Search for restaurants in a location.")]
static RestaurantSearchResponse SearchRestaurants(
[Description("The restaurant search request")] RestaurantSearchRequest request)
{
// Simulated restaurant data
string cuisine = request.Cuisine == "any" ? "Italian" : request.Cuisine;
return new RestaurantSearchResponse
{
Location = request.Location,
Cuisine = request.Cuisine,
Results =
[
new RestaurantInfo
{
Name = "The Golden Fork",
Cuisine = cuisine,
Rating = 4.5,
Address = $"123 Main St, {request.Location}"
},
new RestaurantInfo
{
Name = "Spice Haven",
Cuisine = cuisine == "Italian" ? "Indian" : cuisine,
Rating = 4.7,
Address = $"456 Oak Ave, {request.Location}"
},
new RestaurantInfo
{
Name = "Green Leaf",
Cuisine = "Vegetarian",
Rating = 4.3,
Address = $"789 Elm Rd, {request.Location}"
}
]
};
}
// Get JsonSerializerOptions from the configured HTTP JSON options
Microsoft.AspNetCore.Http.Json.JsonOptions jsonOptions = app.Services.GetRequiredService<IOptions<Microsoft.AspNetCore.Http.Json.JsonOptions>>().Value;
// Create tool with serializer options
AITool[] tools =
[
AIFunctionFactory.Create(
SearchRestaurants,
serializerOptions: jsonOptions.SerializerOptions)
];
// Create the AI agent with tools
ChatClient chatClient = new AzureOpenAIClient(
new Uri(endpoint),
new DefaultAzureCredential())
.GetChatClient(deploymentName);
ChatClientAgent agent = chatClient.AsIChatClient().AsAIAgent(
name: "AGUIAssistant",
instructions: "You are a helpful assistant with access to restaurant information.",
tools: tools);
// Map the AG-UI agent endpoint
app.MapAGUI("/", agent);
await app.RunAsync();
重要概念
- 伺服器端執行:工具在伺服器進程中執行
- 自動流式傳輸: 工具調用和結果實時流式傳輸給客戶端
這很重要
建立具有複雜參數類型(物件、陣列等)的工具時,必須將參數提供 serializerOptions 給 AIFunctionFactory.Create()。 序列化程式選項應該從應用程式設定的 JsonOptions via IOptions<Microsoft.AspNetCore.Http.Json.JsonOptions> 取得,以確保與應用程式 JSON 序列化的其餘部分保持一致。
執行伺服器
設定環境變數並執行:
export AZURE_OPENAI_ENDPOINT="https://your-resource.openai.azure.com/"
export AZURE_OPENAI_DEPLOYMENT_NAME="gpt-4o-mini"
dotnet run --urls http://localhost:8888
觀察用戶端中的工具呼叫
入門教學課程中的基本用戶端會顯示客服專員的最終文字回應。 不過,您可以擴充它,以觀察從伺服器串流的工具呼叫和結果。
顯示工具執行詳細資料
若要即時查看工具呼叫和結果,請擴充用戶端的串流迴圈以處理 FunctionCallContent 和 FunctionResultContent:
// Inside the streaming loop from getting-started.md
await foreach (AgentResponseUpdate update in agent.RunStreamingAsync(messages, session))
{
ChatResponseUpdate chatUpdate = update.AsChatResponseUpdate();
// ... existing run started code ...
// Display streaming content
foreach (AIContent content in update.Contents)
{
switch (content)
{
case TextContent textContent:
Console.ForegroundColor = ConsoleColor.Cyan;
Console.Write(textContent.Text);
Console.ResetColor();
break;
case FunctionCallContent functionCallContent:
Console.ForegroundColor = ConsoleColor.Green;
Console.WriteLine($"\n[Function Call - Name: {functionCallContent.Name}]");
// Display individual parameters
if (functionCallContent.Arguments != null)
{
foreach (var kvp in functionCallContent.Arguments)
{
Console.WriteLine($" Parameter: {kvp.Key} = {kvp.Value}");
}
}
Console.ResetColor();
break;
case FunctionResultContent functionResultContent:
Console.ForegroundColor = ConsoleColor.Magenta;
Console.WriteLine($"\n[Function Result - CallId: {functionResultContent.CallId}]");
if (functionResultContent.Exception != null)
{
Console.WriteLine($" Exception: {functionResultContent.Exception}");
}
else
{
Console.WriteLine($" Result: {functionResultContent.Result}");
}
Console.ResetColor();
break;
case ErrorContent errorContent:
Console.ForegroundColor = ConsoleColor.Red;
Console.WriteLine($"\n[Error: {errorContent.Message}]");
Console.ResetColor();
break;
}
}
}
工具呼叫的預期輸出
當客服人員呼叫後端工具時,您會看到:
User (:q or quit to exit): What's the weather like in Amsterdam?
[Run Started - Thread: thread_abc123, Run: run_xyz789]
[Function Call - Name: SearchRestaurants]
Parameter: Location = Amsterdam
Parameter: Cuisine = any
[Function Result - CallId: call_def456]
Result: {"Location":"Amsterdam","Cuisine":"any","Results":[...]}
The weather in Amsterdam is sunny with a temperature of 22°C. Here are some
great restaurants in the area: The Golden Fork (Italian, 4.5 stars)...
[Run Finished - Thread: thread_abc123]
重要概念
-
FunctionCallContent:表示使用其Name和Arguments(參數索引鍵值組) 呼叫的工具 -
FunctionResultContent:包含工具的Result或Exception,以 識別CallId
後續步驟
現在您可以新增函式工具,您可以:
- 前端工具:新增前端工具。
- 使用 Dojo 測試: 使用 AG-UI 的 Dojo 應用程序測試您的代理
其他資源
本教學課程說明如何將函數工具新增至 AG-UI 代理程式。 函數工具是自訂 Python 函數,代理程式可以呼叫這些函數來執行特定任務,例如檢索資料、執行計算或與外部系統互動。 使用 AG-UI,這些工具在後端執行,其結果會自動串流到用戶端。
先決條件
開始之前,請確定您已完成快速 入門 教學課程,並具備:
- Python 3.10 或更新版本
-
agent-framework-ag-ui已安裝 - 已設定的 Azure OpenAI 服務
- 對 AG-UI 伺服器和用戶端設定的基本了解
備註
這些範例用於 DefaultAzureCredential 驗證。 請確定您已向 Azure 進行驗證 (例如,透過 az login)。 如需詳細資訊,請參閱 Azure 身分識別檔。
什麼是後端工具渲染?
後端工具渲染意味著:
- 功能工具在伺服器上定義
- AI 代理決定何時呼叫這些工具
- 工具在後端(伺服器端)執行
- 工具調用事件和結果實時流式傳輸到客戶端
- 用戶端會收到有關工具執行進度的更新
此方法提供:
- 安全性:敏感操作保留在伺服器上
- 一致性:所有用戶端都使用相同的工具實作
- 透明度:客戶端可以顯示工具執行進度
- 靈活性:無需更改客戶端代碼即可更新工具
建立功能工具
基本功能工具
您可以使用裝飾器將 @tool 任何 Python 函數轉換為工具:
from typing import Annotated
from pydantic import Field
from agent_framework import tool
@tool
def get_weather(
location: Annotated[str, Field(description="The city")],
) -> str:
"""Get the current weather for a location."""
# In a real application, you would call a weather API
return f"The weather in {location} is sunny with a temperature of 22°C."
重要概念
-
@tool裝飾器:將函數標記為對代理程式可用 - 類型註解:提供參數的類型資訊
-
Annotated和Field:新增描述以幫助客服專員了解參數 - Docstring:描述函數的作用(幫助代理決定何時使用它)
- 傳回值:傳回給代理程式的結果(並串流至用戶端)
多功能工具
您可以提供多個工具來為代理程式提供更多功能:
from typing import Any
from agent_framework import tool
@tool
def get_weather(
location: Annotated[str, Field(description="The city.")],
) -> str:
"""Get the current weather for a location."""
return f"The weather in {location} is sunny with a temperature of 22°C."
@tool
def get_forecast(
location: Annotated[str, Field(description="The city.")],
days: Annotated[int, Field(description="Number of days to forecast")] = 3,
) -> dict[str, Any]:
"""Get the weather forecast for a location."""
return {
"location": location,
"days": days,
"forecast": [
{"day": 1, "weather": "Sunny", "high": 24, "low": 18},
{"day": 2, "weather": "Partly cloudy", "high": 22, "low": 17},
{"day": 3, "weather": "Rainy", "high": 19, "low": 15},
],
}
使用函數工具建立 AG-UI 伺服器
以下是具有函數工具的完整伺服器實作:
"""AG-UI server with backend tool rendering."""
import os
from typing import Annotated, Any
from agent_framework import Agent, tool
from agent_framework.azure import AzureOpenAIChatClient
from agent_framework_ag_ui import add_agent_framework_fastapi_endpoint
from azure.identity import AzureCliCredential
from fastapi import FastAPI
from pydantic import Field
# Define function tools
@tool
def get_weather(
location: Annotated[str, Field(description="The city")],
) -> str:
"""Get the current weather for a location."""
# Simulated weather data
return f"The weather in {location} is sunny with a temperature of 22°C."
@tool
def search_restaurants(
location: Annotated[str, Field(description="The city to search in")],
cuisine: Annotated[str, Field(description="Type of cuisine")] = "any",
) -> dict[str, Any]:
"""Search for restaurants in a location."""
# Simulated restaurant data
return {
"location": location,
"cuisine": cuisine,
"results": [
{"name": "The Golden Fork", "rating": 4.5, "price": "$$"},
{"name": "Bella Italia", "rating": 4.2, "price": "$$$"},
{"name": "Spice Garden", "rating": 4.7, "price": "$$"},
],
}
# Read required configuration
endpoint = os.environ.get("AZURE_OPENAI_ENDPOINT")
deployment_name = os.environ.get("AZURE_OPENAI_DEPLOYMENT_NAME")
if not endpoint:
raise ValueError("AZURE_OPENAI_ENDPOINT environment variable is required")
if not deployment_name:
raise ValueError("AZURE_OPENAI_DEPLOYMENT_NAME environment variable is required")
chat_client = AzureOpenAIChatClient(
credential=AzureCliCredential(),
endpoint=endpoint,
deployment_name=deployment_name,
)
# Create agent with tools
agent = Agent(
name="TravelAssistant",
instructions="You are a helpful travel assistant. Use the available tools to help users plan their trips.",
chat_client=chat_client,
tools=[get_weather, search_restaurants],
)
# Create FastAPI app
app = FastAPI(title="AG-UI Travel Assistant")
add_agent_framework_fastapi_endpoint(app, agent, "/")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="127.0.0.1", port=8888)
了解工具事件
當代理呼叫工具時,用戶端會收到數個事件:
工具呼叫事件
# 1. TOOL_CALL_START - Tool execution begins
{
"type": "TOOL_CALL_START",
"toolCallId": "call_abc123",
"toolCallName": "get_weather"
}
# 2. TOOL_CALL_ARGS - Tool arguments (may stream in chunks)
{
"type": "TOOL_CALL_ARGS",
"toolCallId": "call_abc123",
"delta": "{\"location\": \"Paris, France\"}"
}
# 3. TOOL_CALL_END - Arguments complete
{
"type": "TOOL_CALL_END",
"toolCallId": "call_abc123"
}
# 4. TOOL_CALL_RESULT - Tool execution result
{
"type": "TOOL_CALL_RESULT",
"toolCallId": "call_abc123",
"content": "The weather in Paris, France is sunny with a temperature of 22°C."
}
工具事件的增強型用戶端
以下是使用 AGUIChatClient 的增強型用戶端,用來顯示工具執行:
"""AG-UI client with tool event handling."""
import asyncio
import os
from agent_framework import Agent, ToolCallContent, ToolResultContent
from agent_framework_ag_ui import AGUIChatClient
async def main():
"""Main client loop with tool event display."""
server_url = os.environ.get("AGUI_SERVER_URL", "http://127.0.0.1:8888/")
print(f"Connecting to AG-UI server at: {server_url}\n")
# Create AG-UI chat client
chat_client = AGUIChatClient(server_url=server_url)
# Create agent with the chat client
agent = Agent(
name="ClientAgent",
chat_client=chat_client,
instructions="You are a helpful assistant.",
)
# Get a thread for conversation continuity
thread = agent.create_session()
try:
while True:
message = input("\nUser (:q or quit to exit): ")
if not message.strip():
continue
if message.lower() in (":q", "quit"):
break
print("\nAssistant: ", end="", flush=True)
async for update in agent.run(message, session=thread, stream=True):
# Display text content
if update.text:
print(f"\033[96m{update.text}\033[0m", end="", flush=True)
# Display tool calls and results
for content in update.contents:
if isinstance(content, ToolCallContent):
print(f"\n\033[95m[Calling tool: {content.name}]\033[0m")
elif isinstance(content, ToolResultContent):
result_text = content.result if isinstance(content.result, str) else str(content.result)
print(f"\033[94m[Tool result: {result_text}]\033[0m")
print("\n")
except KeyboardInterrupt:
print("\n\nExiting...")
except Exception as e:
print(f"\n\033[91mError: {e}\033[0m")
if __name__ == "__main__":
asyncio.run(main())
互動範例
在執行升級版伺服器和客戶端時:
User (:q or quit to exit): What's the weather like in Paris and suggest some Italian restaurants?
[Run Started]
[Tool Call: get_weather]
[Tool Result: The weather in Paris, France is sunny with a temperature of 22°C.]
[Tool Call: search_restaurants]
[Tool Result: {"location": "Paris", "cuisine": "Italian", "results": [...]}]
Based on the current weather in Paris (sunny, 22°C) and your interest in Italian cuisine,
I'd recommend visiting Bella Italia, which has a 4.2 rating. The weather is perfect for
outdoor dining!
[Run Finished]
工具實作最佳實務
錯誤處理
在工具中優雅地處理錯誤:
@tool
def get_weather(
location: Annotated[str, Field(description="The city.")],
) -> str:
"""Get the current weather for a location."""
try:
# Call weather API
result = call_weather_api(location)
return f"The weather in {location} is {result['condition']} with temperature {result['temp']}°C."
except Exception as e:
return f"Unable to retrieve weather for {location}. Error: {str(e)}"
豐富的傳回類型
適當時傳回結構化資料:
@tool
def analyze_sentiment(
text: Annotated[str, Field(description="The text to analyze")],
) -> dict[str, Any]:
"""Analyze the sentiment of text."""
# Perform sentiment analysis
return {
"text": text,
"sentiment": "positive",
"confidence": 0.87,
"scores": {
"positive": 0.87,
"neutral": 0.10,
"negative": 0.03,
},
}
描述性文件
提供清晰的描述,以幫助客服專員了解何時使用工具:
@tool
def book_flight(
origin: Annotated[str, Field(description="Departure city and airport code, e.g., 'New York, JFK'")],
destination: Annotated[str, Field(description="Arrival city and airport code, e.g., 'London, LHR'")],
date: Annotated[str, Field(description="Departure date in YYYY-MM-DD format")],
passengers: Annotated[int, Field(description="Number of passengers")] = 1,
) -> dict[str, Any]:
"""
Book a flight for specified passengers from origin to destination.
This tool should be used when the user wants to book or reserve airline tickets.
Do not use this for searching flights - use search_flights instead.
"""
# Implementation
pass
使用類別進行工具組織
對於相關工具,請將它們組織在類別中:
from agent_framework import tool
class WeatherTools:
"""Collection of weather-related tools."""
def __init__(self, api_key: str):
self.api_key = api_key
@tool
def get_current_weather(
self,
location: Annotated[str, Field(description="The city.")],
) -> str:
"""Get current weather for a location."""
# Use self.api_key to call API
return f"Current weather in {location}: Sunny, 22°C"
@tool
def get_forecast(
self,
location: Annotated[str, Field(description="The city.")],
days: Annotated[int, Field(description="Number of days")] = 3,
) -> dict[str, Any]:
"""Get weather forecast for a location."""
# Use self.api_key to call API
return {"location": location, "forecast": [...]}
# Create tools instance
weather_tools = WeatherTools(api_key="your-api-key")
# Create agent with class-based tools
agent = Agent(
name="WeatherAgent",
instructions="You are a weather assistant.",
chat_client=AzureOpenAIChatClient(...),
tools=[
weather_tools.get_current_weather,
weather_tools.get_forecast,
],
)
後續步驟
現在您已經了解了後端工具轉譯,您可以:
- 創建高級工具: 了解更多關於使用 Agent Framework 創建函數工具的信息