機器學習實體
重要
LUIS 將於 2025 年 10 月 1 日淘汰,而自 2023 年 4 月 1 日開始,您將無法建立新的 LUIS 資源。 建議移轉 LUIS 應用程式至交談語言理解,以享有產品持續支援和多語言功能的優點。
機器學習實體是建置 LUIS 應用程式的慣用實體。
範例 JSON
假設應用程式接受披薩訂單,例如 可分解的實體教學課程。 每個訂單可以包含數個不同的披薩,包括不同的大小。
範例語句包括:
披薩應用程式的範例語句 |
---|
Can I get a pepperoni pizza and a can of coke please |
can I get a small pizza with onions peppers and olives |
pickup an extra large meat lovers pizza |
因為機器學習實體可以有許多具有必要功能的子實體,因此這隻是一個範例。 它應該被視為實體將傳回之內容指南。
請考慮查詢:
deliver 1 large cheese pizza on thin crust and 2 medium pepperoni pizzas on deep dish crust
如果在 verbose=false
查詢字串中設定,這是 JSON:
"entities": {
"Order": [
{
"FullPizzaWithModifiers": [
{
"PizzaType": [
"cheese pizza"
],
"Size": [
[
"Large"
]
],
"Quantity": [
1
]
},
{
"PizzaType": [
"pepperoni pizzas"
],
"Size": [
[
"Medium"
]
],
"Quantity": [
2
],
"Crust": [
[
"Deep Dish"
]
]
}
]
}
],
"ToppingList": [
[
"Cheese"
],
[
"Pepperoni"
]
],
"CrustList": [
[
"Thin"
]
]
}
如果在 verbose=true
查詢字串中設定,這是 JSON:
"entities": {
"Order": [
{
"FullPizzaWithModifiers": [
{
"PizzaType": [
"cheese pizza"
],
"Size": [
[
"Large"
]
],
"Quantity": [
1
],
"$instance": {
"PizzaType": [
{
"type": "PizzaType",
"text": "cheese pizza",
"startIndex": 16,
"length": 12,
"score": 0.999998868,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"Size": [
{
"type": "SizeList",
"text": "large",
"startIndex": 10,
"length": 5,
"score": 0.998720646,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"Quantity": [
{
"type": "builtin.number",
"text": "1",
"startIndex": 8,
"length": 1,
"score": 0.999878645,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
]
}
},
{
"PizzaType": [
"pepperoni pizzas"
],
"Size": [
[
"Medium"
]
],
"Quantity": [
2
],
"Crust": [
[
"Deep Dish"
]
],
"$instance": {
"PizzaType": [
{
"type": "PizzaType",
"text": "pepperoni pizzas",
"startIndex": 56,
"length": 16,
"score": 0.999987066,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"Size": [
{
"type": "SizeList",
"text": "medium",
"startIndex": 49,
"length": 6,
"score": 0.999841452,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"Quantity": [
{
"type": "builtin.number",
"text": "2",
"startIndex": 47,
"length": 1,
"score": 0.9996054,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"Crust": [
{
"type": "CrustList",
"text": "deep dish crust",
"startIndex": 76,
"length": 15,
"score": 0.761551,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
]
}
}
],
"$instance": {
"FullPizzaWithModifiers": [
{
"type": "FullPizzaWithModifiers",
"text": "1 large cheese pizza on thin crust",
"startIndex": 8,
"length": 34,
"score": 0.616001546,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
},
{
"type": "FullPizzaWithModifiers",
"text": "2 medium pepperoni pizzas on deep dish crust",
"startIndex": 47,
"length": 44,
"score": 0.7395033,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
]
}
}
],
"ToppingList": [
[
"Cheese"
],
[
"Pepperoni"
]
],
"CrustList": [
[
"Thin"
]
],
"$instance": {
"Order": [
{
"type": "Order",
"text": "1 large cheese pizza on thin crust and 2 medium pepperoni pizzas on deep dish crust",
"startIndex": 8,
"length": 83,
"score": 0.6881274,
"modelTypeId": 1,
"modelType": "Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"ToppingList": [
{
"type": "ToppingList",
"text": "cheese",
"startIndex": 16,
"length": 6,
"modelTypeId": 5,
"modelType": "List Entity Extractor",
"recognitionSources": [
"model"
]
},
{
"type": "ToppingList",
"text": "pepperoni",
"startIndex": 56,
"length": 9,
"modelTypeId": 5,
"modelType": "List Entity Extractor",
"recognitionSources": [
"model"
]
}
],
"CrustList": [
{
"type": "CrustList",
"text": "thin crust",
"startIndex": 32,
"length": 10,
"modelTypeId": 5,
"modelType": "List Entity Extractor",
"recognitionSources": [
"model"
]
}
]
}
}