共用方式為


Quickstart: Azure DocumentDB 中的 Python 向量搜尋

在 Azure DocumentDB 裡搭配 Python 用戶端函式庫使用向量搜尋。 有效率地儲存和查詢向量資料。

本快速入門會使用 JSON 檔案中的範例飯店資料集,其中包含模型中的 text-embedding-ada-002 向量。 資料集包括飯店名稱、位置、描述和向量內嵌。

在 GitHub 上尋找 範例程式碼

先決條件

  • Azure 訂用帳戶

    • 如果您沒有 Azure 訂用帳戶,請建立 免費帳戶
  • 一個現有的 Azure DocumentDB 叢集

建立 Python 專案

  1. 為您的專案建立新的目錄,並在 Visual Studio Code 中開啟它:

    mkdir vector-search-quickstart
    code vector-search-quickstart
    
  2. 在終端機中,建立並啟動虛擬環境:

    對於 Windows:

    python -m venv venv
    venv\\Scripts\\activate
    

    對於 macOS/Linux:

    python -m venv venv
    source venv/bin/activate
    
  3. 安裝必要的套件:

    pip install pymongo azure-identity openai python-dotenv
    
    • pymongo:適用於 Python 的 MongoDB 驅動程式
    • azure-identity:用於無密碼驗證的 Azure 身分識別程式庫
    • openai:OpenAI 客戶端庫,用於創建向量
    • python-dotenv:從 .env 檔案管理環境變數
  4. 在專案根目錄中建立 .env 環境變數的檔案:

    # Azure OpenAI configuration
    AZURE_OPENAI_EMBEDDING_ENDPOINT= 
    AZURE_OPENAI_EMBEDDING_MODEL=text-embedding-ada-002
    AZURE_OPENAI_EMBEDDING_API_VERSION=2024-02-01
    
    # Azure DocumentDB configuration
    MONGO_CLUSTER_NAME=
    
    # Data Configuration (defaults should work)
    DATA_FILE_WITH_VECTORS=data/HotelsData_with_vectors.json
    EMBEDDED_FIELD=text_embedding_ada_002
    EMBEDDING_DIMENSIONS=1536
    EMBEDDING_SIZE_BATCH=16
    LOAD_SIZE_BATCH=100
    

    針對本文中使用的無密碼驗證,請將檔案中的 .env 預留位置值取代為您自己的資訊:

    • AZURE_OPENAI_EMBEDDING_ENDPOINT:您的 Azure OpenAI 資源端點 URL
    • MONGO_CLUSTER_NAME: Your Azure DocumentDB 資源名稱

    您應該始終首選無密碼身份驗證,但這需要額外的設定。 如需設定受控識別和完整驗證選項範圍的詳細資訊,請參閱使用 適用於 Python 的 Azure SDK 向 Azure 服務驗證 Python 應用程式

  5. 在根目錄下建立名為data的新子目錄。

  6. 帶有向量的原始資料檔案複製到子目錄中的HotelsData_with_vectors.jsondata檔案中。

  7. 專案結構應該如下所示:

    vector-search-quickstart
    ├── .env
    ├── data
    │   └── HotelsData_with_vectors.json
    └── venv (or your virtual environment folder)
    

透過建立向量搜尋的程式碼檔案來繼續專案。 完成後,專案結構應如下所示:

vector-search-quickstart
├── .env
├── data
│   └── HotelsData_with_vectors.json
├── src
│   ├── diskann.py
│   ├── ivf.py
│   └── hnsw.py
│   └── utils.py
└── venv (or your virtual environment folder)

為您的 Python 檔案建立 src 目錄。 新增兩個檔案:diskann.pyutils.py,用於 DiskANN 索引的執行:

mkdir src    
touch src/diskann.py
touch src/utils.py

將以下程式碼貼到檔案中 diskann.py

import os
from typing import List, Dict, Any
from utils import get_clients, get_clients_passwordless, read_file_return_json, insert_data, print_search_results, drop_vector_indexes
from dotenv import load_dotenv

# Load environment variables
load_dotenv()


def create_diskann_vector_index(collection, vector_field: str, dimensions: int) -> None:

    print(f"Creating DiskANN vector index on field '{vector_field}'...")

    # Drop any existing vector indexes on this field first
    drop_vector_indexes(collection, vector_field)

    # Use the native MongoDB command for Cosmos DB vector indexes
    index_command = {
        "createIndexes": collection.name,
        "indexes": [
            {
                "name": f"diskann_index_{vector_field}",
                "key": {
                    vector_field: "cosmosSearch"  # Cosmos DB vector search index type
                },
                "cosmosSearchOptions": {
                    # DiskANN algorithm configuration
                    "kind": "vector-diskann",

                    # Vector dimensions must match the embedding model
                    "dimensions": dimensions,

                    # Vector similarity metric - cosine is good for text embeddings
                    "similarity": "COS",

                    # Maximum degree: number of edges per node in the graph
                    # Higher values improve accuracy but increase memory usage
                    "maxDegree": 20,

                    # Build parameter: candidates evaluated during index construction
                    # Higher values improve index quality but increase build time
                    "lBuild": 10
                }
            }
        ]
    }

    try:
        # Execute the createIndexes command directly
        result = collection.database.command(index_command)
        print("DiskANN vector index created successfully")

    except Exception as e:
        print(f"Error creating DiskANN vector index: {e}")

        # Check if it's a tier limitation and suggest alternatives
        if "not enabled for this cluster tier" in str(e):
            print("\nDiskANN indexes require a higher cluster tier.")
            print("Try one of these alternatives:")
            print("  • Upgrade your Cosmos DB cluster to a higher tier")
            print("  • Use HNSW instead: python src/hnsw.py")
            print("  • Use IVF instead: python src/ivf.py")
        raise


def perform_diskann_vector_search(collection,
                                 azure_openai_client,
                                 query_text: str,
                                 vector_field: str,
                                 model_name: str,
                                 top_k: int = 5) -> List[Dict[str, Any]]:

    print(f"Performing DiskANN vector search for: '{query_text}'")

    try:
        # Generate embedding for the query text
        embedding_response = azure_openai_client.embeddings.create(
            input=[query_text],
            model=model_name
        )

        query_embedding = embedding_response.data[0].embedding

        # Construct the aggregation pipeline for vector search
        # Cosmos DB for MongoDB vCore uses $search with cosmosSearch
        pipeline = [
            {
                "$search": {
                    # Use cosmosSearch for vector operations in Cosmos DB
                    "cosmosSearch": {
                        # The query vector to search for
                        "vector": query_embedding,

                        # Field containing the document vectors to compare against
                        "path": vector_field,

                        # Number of final results to return
                        "k": top_k
                    }
                }
            },
            {
                # Add similarity score to the results
                "$project": {
                    "document": "$$ROOT",
                    # Add search score from metadata
                    "score": {"$meta": "searchScore"}
                }
            }
        ]

        # Execute the aggregation pipeline
        results = list(collection.aggregate(pipeline))

        return results

    except Exception as e:
        print(f"Error performing DiskANN vector search: {e}")
        raise


def main():

    # Load configuration from environment variables
    config = {
        'cluster_name': os.getenv('MONGO_CLUSTER_NAME', 'vectorSearch'),
        'database_name': 'vectorSearchDB',
        'collection_name': 'vectorSearchCollection',
        'data_file': os.getenv('DATA_FILE_WITH_VECTORS', 'data/HotelsData_with_vectors.json'),
        'vector_field': os.getenv('EMBEDDED_FIELD', 'DescriptionVector'),
        'model_name': os.getenv('AZURE_OPENAI_EMBEDDING_MODEL', 'text-embedding-ada-002'),
        'dimensions': int(os.getenv('EMBEDDING_DIMENSIONS', '1536')),
        'batch_size': int(os.getenv('LOAD_SIZE_BATCH', '100'))
    }

    try:
        # Initialize clients
        print("\nInitializing MongoDB and Azure OpenAI clients...")
        mongo_client, azure_openai_client = get_clients_passwordless()

        # Get database and collection
        database = mongo_client[config['database_name']]
        collection = database[config['collection_name']]

        # Load data with embeddings
        print(f"\nLoading data from {config['data_file']}...")
        data = read_file_return_json(config['data_file'])
        print(f"Loaded {len(data)} documents")

        # Verify embeddings are present
        documents_with_embeddings = [doc for doc in data if config['vector_field'] in doc]
        if not documents_with_embeddings:
            raise ValueError(f"No documents found with embeddings in field '{config['vector_field']}'. "
                           "Please run create_embeddings.py first.")

        # Insert data into collection
        print(f"\nInserting data into collection '{config['collection_name']}'...")

        # Clear existing data to ensure clean state
        collection.delete_many({})
        print("Cleared existing data from collection")

        # Insert the hotel data
        stats = insert_data(
            collection,
            documents_with_embeddings,
            batch_size=config['batch_size']
        )

        if stats['inserted'] == 0:
            raise ValueError("No documents were inserted successfully")

        # Create DiskANN vector index
        create_diskann_vector_index(
            collection,
            config['vector_field'],
            config['dimensions']
        )

        # Wait briefly for index to be ready
        import time
        print("Waiting for index to be ready...")
        time.sleep(2)

        # Perform sample vector search
        query = "quintessential lodging near running trails, eateries, retail"

        results = perform_diskann_vector_search(
            collection,
            azure_openai_client,
            query,
            config['vector_field'],
            config['model_name'],
            top_k=5
        )

        # Display results
        print_search_results(results, max_results=5, show_score=True)


    except Exception as e:
        print(f"\nError during DiskANN demonstration: {e}")
        raise

    finally:
        # Close the MongoDB client
        if 'mongo_client' in locals():
            mongo_client.close()


if __name__ == "__main__":
    main()

此主模組提供下列功能:

  • 包括實用功能

  • 建立環境變數的組態物件

  • 建立 Azure OpenAI 和 Azure DocumentDB 的用戶端

  • 連接到MongoDB,建立資料庫和集合,插入資料,建立標準索引

  • 使用 IVF、HNSW 或 DiskANN 建立向量索引

  • 使用 OpenAI 用戶端為範例查詢文字建立嵌入。 您可以變更檔案頂端的查詢

  • 使用內嵌執行向量搜尋並列印結果

建立公用程式函數

將以下程式碼貼到:utils.py

import json
import os
import time
from typing import Dict, List, Any, Optional, Tuple
from pymongo import MongoClient, InsertOne
from pymongo.collection import Collection
from pymongo.errors import BulkWriteError
from azure.identity import DefaultAzureCredential
from pymongo.auth_oidc import OIDCCallback, OIDCCallbackContext, OIDCCallbackResult
from openai import AzureOpenAI
from dotenv import load_dotenv

# Load environment variables from .env file
load_dotenv()

class AzureIdentityTokenCallback(OIDCCallback):
    def __init__(self, credential):
        self.credential = credential

    def fetch(self, context: OIDCCallbackContext) -> OIDCCallbackResult:
        token = self.credential.get_token(
            "https://ossrdbms-aad.database.windows.net/.default").token
        return OIDCCallbackResult(access_token=token)

def get_clients() -> Tuple[MongoClient, AzureOpenAI]:

    # Get MongoDB connection string - required for Cosmos DB access
    mongo_connection_string = os.getenv("MONGO_CONNECTION_STRING")
    if not mongo_connection_string:
        raise ValueError("MONGO_CONNECTION_STRING environment variable is required")

    # Create MongoDB client with optimized settings for Cosmos DB
    mongo_client = MongoClient(
        mongo_connection_string,
        maxPoolSize=50,  # Allow up to 50 connections for better performance
        minPoolSize=5,   # Keep minimum 5 connections open
        maxIdleTimeMS=30000,  # Close idle connections after 30 seconds
        serverSelectionTimeoutMS=5000,  # 5 second timeout for server selection
        socketTimeoutMS=20000  # 20 second socket timeout
    )

    # Get Azure OpenAI configuration
    azure_openai_endpoint = os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT")
    azure_openai_key = os.getenv("AZURE_OPENAI_EMBEDDING_KEY")

    if not azure_openai_endpoint or not azure_openai_key:
        raise ValueError("Azure OpenAI endpoint and key are required")

    # Create Azure OpenAI client for generating embeddings
    azure_openai_client = AzureOpenAI(
        azure_endpoint=azure_openai_endpoint,
        api_key=azure_openai_key,
        api_version=os.getenv("AZURE_OPENAI_EMBEDDING_API_VERSION", "2024-02-01")
    )

    return mongo_client, azure_openai_client


def get_clients_passwordless() -> Tuple[MongoClient, AzureOpenAI]:

    # Get MongoDB cluster name for passwordless authentication
    cluster_name = os.getenv("MONGO_CLUSTER_NAME")
    if not cluster_name:
        raise ValueError("MONGO_CLUSTER_NAME environment variable is required")

    # Create credential object for Azure authentication
    credential = DefaultAzureCredential()

    authProperties = {"OIDC_CALLBACK": AzureIdentityTokenCallback(credential)}

    # Create MongoDB client with Azure AD token callback
    mongo_client = MongoClient(
        f"mongodb+srv://{cluster_name}.global.mongocluster.cosmos.azure.com/",
        connectTimeoutMS=120000,
        tls=True,
        retryWrites=True,
        authMechanism="MONGODB-OIDC",
        authMechanismProperties=authProperties
    )

    # Get Azure OpenAI endpoint
    azure_openai_endpoint = os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT")
    if not azure_openai_endpoint:
        raise ValueError("AZURE_OPENAI_EMBEDDING_ENDPOINT environment variable is required")

    # Create Azure OpenAI client with credential-based authentication
    azure_openai_client = AzureOpenAI(
        azure_endpoint=azure_openai_endpoint,
        azure_ad_token_provider=lambda: credential.get_token("https://cognitiveservices.azure.com/.default").token,
        api_version=os.getenv("AZURE_OPENAI_EMBEDDING_API_VERSION", "2024-02-01")
    )

    return mongo_client, azure_openai_client


def azure_identity_token_callback(credential: DefaultAzureCredential) -> str:

    # Cosmos DB for MongoDB requires this specific scope
    token_scope = "https://cosmos.azure.com/.default"

    # Get token from Azure AD
    token = credential.get_token(token_scope)

    return token.token


def read_file_return_json(file_path: str) -> List[Dict[str, Any]]:

    try:
        with open(file_path, 'r', encoding='utf-8') as file:
            return json.load(file)
    except FileNotFoundError:
        print(f"Error: File '{file_path}' not found")
        raise
    except json.JSONDecodeError as e:
        print(f"Error: Invalid JSON in file '{file_path}': {e}")
        raise


def write_file_json(data: List[Dict[str, Any]], file_path: str) -> None:

    try:
        with open(file_path, 'w', encoding='utf-8') as file:
            json.dump(data, file, indent=2, ensure_ascii=False)
        print(f"Data successfully written to '{file_path}'")
    except IOError as e:
        print(f"Error writing to file '{file_path}': {e}")
        raise


def insert_data(collection: Collection, data: List[Dict[str, Any]],
                batch_size: int = 100, index_fields: Optional[List[str]] = None) -> Dict[str, int]:

    total_documents = len(data)
    inserted_count = 0
    failed_count = 0

    print(f"Starting batch insertion of {total_documents} documents...")

    # Create indexes if specified
    if index_fields:
        for field in index_fields:
            try:
                collection.create_index(field)
                print(f"Created index on field: {field}")
            except Exception as e:
                print(f"Warning: Could not create index on {field}: {e}")

    # Process data in batches to manage memory and error recovery
    for i in range(0, total_documents, batch_size):
        batch = data[i:i + batch_size]
        batch_num = (i // batch_size) + 1
        total_batches = (total_documents + batch_size - 1) // batch_size

        try:
            # Prepare bulk insert operations
            operations = [InsertOne(document) for document in batch]

            # Execute bulk insert
            result = collection.bulk_write(operations, ordered=False)
            inserted_count += result.inserted_count

            print(f"Batch {batch_num} completed: {result.inserted_count} documents inserted")

        except BulkWriteError as e:
            # Handle partial failures in bulk operations
            inserted_count += e.details.get('nInserted', 0)
            failed_count += len(batch) - e.details.get('nInserted', 0)

            print(f"Batch {batch_num} had errors: {e.details.get('nInserted', 0)} inserted, "
                  f"{failed_count} failed")

            # Print specific error details for debugging
            for error in e.details.get('writeErrors', []):
                print(f"  Error: {error.get('errmsg', 'Unknown error')}")

        except Exception as e:
            # Handle unexpected errors
            failed_count += len(batch)
            print(f"Batch {batch_num} failed completely: {e}")

        # Small delay between batches to avoid overwhelming the database
        time.sleep(0.1)

    # Return summary statistics
    stats = {
        'total': total_documents,
        'inserted': inserted_count,
        'failed': failed_count
    }

    return stats


def drop_vector_indexes(collection, vector_field: str) -> None:

    try:
        # Get all indexes for the collection
        indexes = list(collection.list_indexes())

        # Find vector indexes on the specified field
        vector_indexes = []
        for index in indexes:
            if 'key' in index and vector_field in index['key']:
                if index['key'][vector_field] == 'cosmosSearch':
                    vector_indexes.append(index['name'])

        # Drop each vector index found
        for index_name in vector_indexes:
            print(f"Dropping existing vector index: {index_name}")
            collection.drop_index(index_name)

        if vector_indexes:
            print(f"Dropped {len(vector_indexes)} existing vector index(es)")
        else:
            print("No existing vector indexes found to drop")

    except Exception as e:
        print(f"Warning: Could not drop existing vector indexes: {e}")
        # Continue anyway - the error might be that no indexes exist


def print_search_resultsx(results: List[Dict[str, Any]],
                        max_results: int = 5,
                        show_score: bool = True) -> None:

    if not results:
        print("No search results found.")
        return

    print(f"\nSearch Results (showing top {min(len(results), max_results)}):")
    print("=" * 80)

    for i, result in enumerate(results[:max_results], 1):

        # Display hotel name and ID
        print(f"HotelName: {result['HotelName']}, Score: {result['score']:.4f}")

def print_search_results(results: List[Dict[str, Any]],
                        max_results: int = 5,
                        show_score: bool = True) -> None:

    if not results:
        print("No search results found.")
        return

    print(f"\nSearch Results (showing top {min(len(results), max_results)}):")
    print("=" * 80)

    for i, result in enumerate(results[:max_results], 1):

        # Check if results are nested under 'document' (when using $$ROOT)
        if 'document' in result:
            doc = result['document']
        else:
            doc = result

        # Display hotel name and ID
        print(f"HotelName: {doc['HotelName']}, Score: {result['score']:.4f}")


    if len(results) > max_results:
        print(f"\n... and {len(results) - max_results} more results")

此公用程式模組提供下列功能:

  • JsonData:資料結構的介面

  • scoreProperty:基於向量搜尋方法的查詢結果中分數的位置

  • getClients: 為 Azure OpenAI 與 Azure DocumentDB 建立並回傳客戶端

  • getClientsPasswordless:創建並返回 Azure OpenAI 與 Azure DocumentDB 的客戶端,使用無密碼認證。 在這兩個資源上啟用 RBAC,並登入 Azure CLI

  • readFileReturnJson:讀取 JSON 檔案並將其內容傳回為物件陣 JsonData

  • writeFileJson:將物件陣 JsonData 列寫入 JSON 檔案

  • insertData:將資料批次插入 MongoDB 集合中,並在指定欄位上建立標準索引

  • printSearchResults:列印向量搜尋的結果,包括分數和飯店名稱

使用 Azure CLI 進行驗證

在執行應用程式之前,請先登入 Azure CLI,以便安全地存取 Azure 資源。

az login

執行應用程式

若要執行 Python 指令碼:

python src/diskann.py

您會看到符合向量搜尋查詢的前五家飯店及其相似性分數。

在 Visual Studio Code 中檢視和管理資料

  1. 在 Visual Studio Code 中選擇 DocumentDB 擴充功能 ,以連接你的 Azure DocumentDB 帳號。

  2. 檢視飯店資料庫中的資料和索引。

    DocumentDB 擴充套件的截圖,顯示 Azure DocumentDB 集合。

清理資源

刪除資源群組、Azure DocumentDB 帳號和不需要的 Azure OpenAI 資源,以避免額外費用。