TransformExtensionsCatalog.Concatenate 方法
定義
重要
部分資訊涉及發行前產品,在發行之前可能會有大幅修改。 Microsoft 對此處提供的資訊,不做任何明確或隱含的瑕疵擔保。
建立 ColumnConcatenatingEstimator ,將一或多個輸入資料行串連至新的輸出資料行。
public static Microsoft.ML.Transforms.ColumnConcatenatingEstimator Concatenate (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, params string[] inputColumnNames);
static member Concatenate : Microsoft.ML.TransformsCatalog * string * string[] -> Microsoft.ML.Transforms.ColumnConcatenatingEstimator
<Extension()>
Public Function Concatenate (catalog As TransformsCatalog, outputColumnName As String, ParamArray inputColumnNames As String()) As ColumnConcatenatingEstimator
參數
- catalog
- TransformsCatalog
轉換的目錄。
- outputColumnName
- String
轉換 inputColumnNames
所產生的資料行名稱。
此資料行的資料類型將是輸入資料行資料類型的向量。
- inputColumnNames
- String[]
要串連的資料行名稱。 此估算器會在索引鍵類型以外的任何資料類型上運作。 如果提供多個資料行,則它們必須具有相同的資料類型。
傳回
範例
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class Concatenate
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Create a small dataset as an IEnumerable.
var samples = new List<InputData>()
{
new InputData(){ Feature1 = 0.1f, Feature2 = new[]{ 1.1f, 2.1f,
3.1f }, Feature3 = 1 },
new InputData(){ Feature1 = 0.2f, Feature2 = new[]{ 1.2f, 2.2f,
3.2f }, Feature3 = 2 },
new InputData(){ Feature1 = 0.3f, Feature2 = new[]{ 1.3f, 2.3f,
3.3f }, Feature3 = 3 },
new InputData(){ Feature1 = 0.4f, Feature2 = new[]{ 1.4f, 2.4f,
3.4f }, Feature3 = 4 },
new InputData(){ Feature1 = 0.5f, Feature2 = new[]{ 1.5f, 2.5f,
3.5f }, Feature3 = 5 },
new InputData(){ Feature1 = 0.6f, Feature2 = new[]{ 1.6f, 2.6f,
3.6f }, Feature3 = 6 },
};
// Convert training data to IDataView.
var dataview = mlContext.Data.LoadFromEnumerable(samples);
// A pipeline for concatenating the "Feature1", "Feature2" and
// "Feature3" columns together into a vector that will be the Features
// column. Concatenation is necessary because trainers take feature
// vectors as inputs.
//
// Please note that the "Feature3" column is converted from int32 to
// float using the ConvertType. The Concatenate requires all columns to
// be of same type.
var pipeline = mlContext.Transforms.Conversion.ConvertType("Feature3",
outputKind: DataKind.Single)
.Append(mlContext.Transforms.Concatenate("Features", new[]
{ "Feature1", "Feature2", "Feature3" }));
// The transformed data.
var transformedData = pipeline.Fit(dataview).Transform(dataview);
// Now let's take a look at what this concatenation did.
// We can extract the newly created column as an IEnumerable of
// TransformedData.
var featuresColumn = mlContext.Data.CreateEnumerable<TransformedData>(
transformedData, reuseRowObject: false);
// And we can write out a few rows
Console.WriteLine($"Features column obtained post-transformation.");
foreach (var featureRow in featuresColumn)
Console.WriteLine(string.Join(" ", featureRow.Features));
// Expected output:
// Features column obtained post-transformation.
// 0.1 1.1 2.1 3.1 1
// 0.2 1.2 2.2 3.2 2
// 0.3 1.3 2.3 3.3 3
// 0.4 1.4 2.4 3.4 4
// 0.5 1.5 2.5 3.5 5
// 0.6 1.6 2.6 3.6 6
}
private class InputData
{
public float Feature1;
[VectorType(3)]
public float[] Feature2;
public int Feature3;
}
private sealed class TransformedData
{
public float[] Features { get; set; }
}
}
}