tanh
傳回複數的雙曲線正切函數。
template<class Type>
complex<Type> tanh(
const complex<Type>& _ComplexNum
);
參數
- _ComplexNum
的雙曲線正切函數來決定的複數。
傳回值
是輸入複數的雙曲線正切函數的複數。
備註
定義複雜 Hyperbolic Cotangent 的識別:
tanh (z) = sinh (z)/短棒 (z) = (exp (z) – exp (-z)/(exp (z) + exp (-z))
範例
// complex_tanh.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
complex <double> c1 ( 3.0 , 4.0 );
cout << "Complex number c1 = " << c1 << endl;
// Values of cosine of a complex number c1
complex <double> c2 = tanh ( c1 );
cout << "Complex number c2 = tanh ( c1 ) = " << c2 << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is: " << absc2 << endl;
cout << "The argument of c2 is: "<< argc2 << " radians, which is "
<< argc2 * 180 / pi << " degrees." << endl << endl;
// Hyperbolic tangents of the standard angles
// in the first two quadrants of the complex plane
vector <complex <double> > v1;
vector <complex <double> >::iterator Iter1;
complex <double> vc1 ( polar ( 1.0, pi / 6 ) );
v1.push_back( tanh ( vc1 ) );
complex <double> vc2 ( polar ( 1.0, pi / 3 ) );
v1.push_back( tanh ( vc2 ) );
complex <double> vc3 ( polar ( 1.0, pi / 2 ) );
v1.push_back( tanh ( vc3 ) );
complex <double> vc4 ( polar ( 1.0, 2 * pi / 3 ) );
v1.push_back( tanh ( vc4 ) );
complex <double> vc5 ( polar ( 1.0, 5 * pi / 6 ) );
v1.push_back( tanh ( vc5 ) );
complex <double> vc6 ( polar ( 1.0, pi ) );
v1.push_back( tanh ( vc6 ) );
cout << "The complex components tanh (vci), where abs (vci) = 1"
<< "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )
cout << *Iter1 << endl;
}
需求
標題: <複雜>
命名空間: std