sqrt
計算複數的平方根。
template<class Type>
complex<Type> sqrt(
const complex<Type>& _ComplexNum
);
參數
- _ComplexNum
要尋找的平方根的複數。
傳回值
複數的平方根。
備註
這個平方根都會有半開啟的時間間隔內相角 (- pi/2, pi/2]。
分支插補接廣告的這個 Facet 是沿著負數真正的座標軸。
複數的平方根都是輸入參數和引數平方根是二的其中一個輸入數字的絕對值。
範例
// complex_sqrt.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
// Complex numbers can be entered in polar form with
// modulus and argument parameter inputs but are
// stored in Cartesian form as real & imag coordinates
complex <double> c1 ( polar ( 25.0 , pi / 2 ) );
complex <double> c2 = sqrt ( c1 );
cout << "c1 = polar ( 5.0 ) = " << c1 << endl;
cout << "c2 = sqrt ( c1 ) = " << c2 << endl;
// The modulus and argument of a complex number can be recovered
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is recovered from c2 using: abs ( c2 ) = "
<< absc2 << endl;
cout << "Argument of c2 is recovered from c2 using:\n arg ( c2 ) = "
<< argc2 << " radians, which is " << argc2 * 180 / pi
<< " degrees." << endl;
// The modulus and argument of c2 can be directly calculated
absc2 = sqrt( abs ( c1 ) );
argc2 = 0.5 * arg ( c1 );
cout << "The modulus of c2 = sqrt( abs ( c1 ) ) =" << absc2 << endl;
cout << "The argument of c2 = ( 1 / 2 ) * arg ( c1 ) ="
<< argc2 << " radians,\n which is " << argc2 * 180 / pi
<< " degrees." << endl;
}
需求
標題: <複雜>
命名空間: std