逐步解說:使用聯結以避免死結
本主題會使用哲學家用餐問題,說明如何使用 Concurrency::join 類別來避免應用程式中的死結。 在軟體應用程式中,如果有兩個以上的處理序各擁有一項資源,而互相等候另一個處理序釋放另一項資源,即會發生「死結」(Deadlock)。
我們常用哲學家用餐問題做為特定範例,說明多個並行處理序之間共用一組資源時可能會發生的一般問題集。
必要條件
在您開始閱讀此逐步解說前,請先參閱下列主題:
章節
此逐步解說包含下列章節:
哲學家用餐問題
直覺實作
使用聯結以避免死結
哲學家用餐問題
哲學家用餐問題說明了應用程式中為何會發生死結。 在此問題中,有五位哲學家圍坐在一個圓桌。 每位哲學家各交替著思考與用餐的動作。 每位哲學家都必須與左邊的哲學家共用一根筷子,與右邊的哲學家也必須共用一根筷子。 下圖顯示其座位配置。
哲學家必須同時擁有兩根筷子,才能用餐。 如果每個哲學家各有一根筷子,而都在等候另一根,則沒有哲學家可以用餐,大家都得挨餓。
回到頁首
直覺實作
下列範例說明哲學家用餐問題的直覺實作。 衍生自 Concurrency::agent 的 philosopher 類別,可讓每一位哲學家獨立執行動作。 此範例使用 Concurrency::critical_section 物件的共用陣列,給予每個 philosopher 物件獨佔存取一雙筷子的權限。
我們以 philosopher 類別代表一個哲學家,說明實作與圖例的關聯性。 int 變數代表每根筷子。 critical_section 物件做為筷子的持有者。 run 方法模擬哲學家的生命。 think 方法模擬思考的動作,eat 方法則模擬用餐的動作。
philosopher 在呼叫 eat 方法前,會先同時鎖定前述兩個 critical_section 物件,以模擬從持有者手中拿走筷子的動作。 在呼叫 eat 之後,philosopher 物件會將 critical_section 物件重新設為未鎖定的狀態,將筷子歸還給持有者。
pickup_chopsticks 方法說明可能會發生死結的情況。 如果每個 philosopher 物件皆取得其中一個鎖定的存取權,則沒有任何 philosopher 物件可繼續動作,因為另一個鎖定皆由其他 philosopher 物件所控制。
範例
程式碼
// philosophers-deadlock.cpp
// compile with: /EHsc
#include <agents.h>
#include <string>
#include <array>
#include <iostream>
#include <algorithm>
#include <random>
using namespace Concurrency;
using namespace std;
// Defines a single chopstick.
typedef int chopstick;
// The total number of philosophers.
const int philosopher_count = 5;
// The number of times each philosopher should eat.
const int eat_count = 50;
// A shared array of critical sections. Each critical section
// guards access to a single chopstick.
critical_section locks[philosopher_count];
// Implements the logic for a single dining philosopher.
class philosopher : public agent
{
public:
explicit philosopher(chopstick& left, chopstick& right, const wstring& name)
: _left(left)
, _right(right)
, _name(name)
, _random_generator(42)
{
send(_times_eaten, 0);
}
// Retrieves the number of times the philosopher has eaten.
int times_eaten()
{
return receive(_times_eaten);
}
// Retrieves the name of the philosopher.
wstring name() const
{
return _name;
}
protected:
// Performs the main logic of the dining philosopher algorithm.
void run()
{
// Repeat the thinks/eat cycle a set number of times.
for (int n = 0; n < eat_count; ++n)
{
think();
pickup_chopsticks();
eat();
send(_times_eaten, n+1);
putdown_chopsticks();
}
done();
}
// Gains access to the chopsticks.
void pickup_chopsticks()
{
// Deadlock occurs here if each philosopher gains access to one
// of the chopsticks and mutually waits for another to release
// the other chopstick.
locks[_left].lock();
locks[_right].lock();
}
// Releases the chopsticks for others.
void putdown_chopsticks()
{
locks[_right].unlock();
locks[_left].unlock();
}
// Simulates thinking for a brief period of time.
void think()
{
random_wait(100);
}
// Simulates eating for a brief period of time.
void eat()
{
random_wait(100);
}
private:
// Yields the current context for a random period of time.
void random_wait(unsigned int max)
{
Concurrency::wait(_random_generator()%max);
}
private:
// Index of the left chopstick in the chopstick array.
chopstick& _left;
// Index of the right chopstick in the chopstick array.
chopstick& _right;
// The name of the philosopher.
wstring _name;
// Stores the number of times the philosopher has eaten.
overwrite_buffer<int> _times_eaten;
// A random number generator.
mt19937 _random_generator;
};
int wmain()
{
// Create an array of index values for the chopsticks.
array<chopstick, philosopher_count> chopsticks = {0, 1, 2, 3, 4};
// Create an array of philosophers. Each pair of neighboring
// philosophers shares one of the chopsticks.
array<philosopher, philosopher_count> philosophers = {
philosopher(chopsticks[0], chopsticks[1], L"aristotle"),
philosopher(chopsticks[1], chopsticks[2], L"descartes"),
philosopher(chopsticks[2], chopsticks[3], L"hobbes"),
philosopher(chopsticks[3], chopsticks[4], L"socrates"),
philosopher(chopsticks[4], chopsticks[0], L"plato"),
};
// Begin the simulation.
for_each (philosophers.begin(), philosophers.end(), [](philosopher& p) {
p.start();
});
// Wait for each philosopher to finish and print his name and the number
// of times he has eaten.
for_each (philosophers.begin(), philosophers.end(), [](philosopher& p) {
agent::wait(&p);
wcout << p.name() << L" ate " << p.times_eaten() << L" times." << endl;
});
}
編譯程式碼
請複製範例程式碼,並將它貼在 Visual Studio 專案中,或貼在名為 philosophers-deadlock.cpp 的檔案中,然後在 Visual Studio 2010 的 [命令提示字元] 視窗中執行下列命令。
cl.exe /EHsc philosophers-deadlock.cpp
回到頁首
使用聯結以避免死結
本節說明如何使用訊息緩衝區和訊息傳遞函式消除死結的可能性。
為使此範例與前一個範例產生關聯,philosopher 類別會使用 Concurrency::unbounded_buffer 物件與 join 物件取代每一個 critical_section 物件。 join 物件做為將筷子提供給哲學家的仲裁者。
此範例會使用 unbounded_buffer 類別,因為當目標接收到來自 unbounded_buffer 物件的訊息時,該訊息會從訊息佇列中移除。 這可讓保有訊息的 unbounded_buffer 物件指出筷子處於可用狀態。 未獲得訊息的 unbounded_buffer 物件則會指出有人正在使用筷子。
此範例會使用非窮盡 (non-greedy) join 物件,因為非窮盡聯結只有在兩個 unbounded_buffer 物件都包含訊息時,才會給予每個 philosopher 物件兩根筷子的存取權。 窮盡 (greedy) 聯結不會避免死結,因為只要一有訊息,窮盡聯結就會立即接受。 如果所有窮盡 join 物件都接收其中一個訊息,但無止盡地等待另一個訊息變成可用訊息,就會發生死結。
如需窮盡和非窮盡聯結的詳細資訊,以及各種訊息緩衝區類型之間的差異資訊,請參閱非同步訊息區。
若要在此範例中避免死結
從範例中移除下列程式碼。
// A shared array of critical sections. Each critical section // guards access to a single chopstick. critical_section locks[philosopher_count];
將 philosopher 類別之 _left 和 _right 資料成員的類型變更為 unbounded_buffer。
// Message buffer for the left chopstick. unbounded_buffer<chopstick>& _left; // Message buffer for the right chopstick. unbounded_buffer<chopstick>& _right;
修改 philosopher 建構函式,以 unbounded_buffer 物件做為其參數。
explicit philosopher(unbounded_buffer<chopstick>& left, unbounded_buffer<chopstick>& right, const wstring& name) : _left(left) , _right(right) , _name(name) , _random_generator(42) { send(_times_eaten, 0); }
修改 pickup_chopsticks 方法,以使用非窮盡 join 物件接收來自一雙筷子之訊息緩衝區的訊息。
// Gains access to the chopsticks. vector<int> pickup_chopsticks() { // Create a non-greedy join object and link it to the left and right // chopstick. join<chopstick, non_greedy> j(2); _left.link_target(&j); _right.link_target(&j); // Receive from the join object. This resolves the deadlock situation // because a non-greedy join removes the messages only when a message // is available from each of its sources. return receive(&j); }
修改 putdown_chopsticks 方法,將訊息傳送至一雙筷子的訊息緩衝區,以釋放筷子的存取權。
// Releases the chopsticks for others. void putdown_chopsticks(int left, int right) { // Add the values of the messages back to the message queue. asend(&_left, left); asend(&_right, right); }
修改 run 方法以保有 pickup_chopsticks 方法的結果,並將這些結果傳遞至 putdown_chopsticks 方法。
// Performs the main logic of the dining philosopher algorithm. void run() { // Repeat the thinks/eat cycle a set number of times. for (int n = 0; n < eat_count; ++n) { think(); vector<int> v = pickup_chopsticks(); eat(); send(_times_eaten, n+1); putdown_chopsticks(v[0], v[1]); } done(); }
將 wmain 函式中的 chopsticks 變數宣告修改成各包含一則訊息之 unbounded_buffer 物件的陣列。
// Create an array of message buffers to hold the chopsticks. array<unbounded_buffer<chopstick>, philosopher_count> chopsticks; // Send a value to each message buffer in the array. // The value of the message is not important. A buffer that contains // any message indicates that the chopstick is available. for_each (chopsticks.begin(), chopsticks.end(), [](unbounded_buffer<chopstick>& c) { send(c, 1); });
範例
說明
以下顯示使用非窮盡 join 物件消除死結風險的完整範例。
程式碼
// philosophers-join.cpp
// compile with: /EHsc
#include <agents.h>
#include <string>
#include <array>
#include <iostream>
#include <algorithm>
#include <random>
using namespace Concurrency;
using namespace std;
// Defines a single chopstick.
typedef int chopstick;
// The total number of philosophers.
const int philosopher_count = 5;
// The number of times each philosopher should eat.
const int eat_count = 50;
// Implements the logic for a single dining philosopher.
class philosopher : public agent
{
public:
explicit philosopher(unbounded_buffer<chopstick>& left,
unbounded_buffer<chopstick>& right, const wstring& name)
: _left(left)
, _right(right)
, _name(name)
, _random_generator(42)
{
send(_times_eaten, 0);
}
// Retrieves the number of times the philosopher has eaten.
int times_eaten()
{
return receive(_times_eaten);
}
// Retrieves the name of the philosopher.
wstring name() const
{
return _name;
}
protected:
// Performs the main logic of the dining philosopher algorithm.
void run()
{
// Repeat the thinks/eat cycle a set number of times.
for (int n = 0; n < eat_count; ++n)
{
think();
vector<int> v = pickup_chopsticks();
eat();
send(_times_eaten, n+1);
putdown_chopsticks(v[0], v[1]);
}
done();
}
// Gains access to the chopsticks.
vector<int> pickup_chopsticks()
{
// Create a non-greedy join object and link it to the left and right
// chopstick.
join<chopstick, non_greedy> j(2);
_left.link_target(&j);
_right.link_target(&j);
// Receive from the join object. This resolves the deadlock situation
// because a non-greedy join removes the messages only when a message
// is available from each of its sources.
return receive(&j);
}
// Releases the chopsticks for others.
void putdown_chopsticks(int left, int right)
{
// Add the values of the messages back to the message queue.
asend(&_left, left);
asend(&_right, right);
}
// Simulates thinking for a brief period of time.
void think()
{
random_wait(100);
}
// Simulates eating for a brief period of time.
void eat()
{
random_wait(100);
}
private:
// Yields the current context for a random period of time.
void random_wait(unsigned int max)
{
Concurrency::wait(_random_generator()%max);
}
private:
// Message buffer for the left chopstick.
unbounded_buffer<chopstick>& _left;
// Message buffer for the right chopstick.
unbounded_buffer<chopstick>& _right;
// The name of the philosopher.
wstring _name;
// Stores the number of times the philosopher has eaten.
overwrite_buffer<int> _times_eaten;
// A random number generator.
mt19937 _random_generator;
};
int wmain()
{
// Create an array of message buffers to hold the chopsticks.
array<unbounded_buffer<chopstick>, philosopher_count> chopsticks;
// Send a value to each message buffer in the array.
// The value of the message is not important. A buffer that contains
// any message indicates that the chopstick is available.
for_each (chopsticks.begin(), chopsticks.end(),
[](unbounded_buffer<chopstick>& c) {
send(c, 1);
});
// Create an array of philosophers. Each pair of neighboring
// philosophers shares one of the chopsticks.
array<philosopher, philosopher_count> philosophers = {
philosopher(chopsticks[0], chopsticks[1], L"aristotle"),
philosopher(chopsticks[1], chopsticks[2], L"descartes"),
philosopher(chopsticks[2], chopsticks[3], L"hobbes"),
philosopher(chopsticks[3], chopsticks[4], L"socrates"),
philosopher(chopsticks[4], chopsticks[0], L"plato"),
};
// Begin the simulation.
for_each (philosophers.begin(), philosophers.end(), [](philosopher& p) {
p.start();
});
// Wait for each philosopher to finish and print his name and the number
// of times he has eaten.
for_each (philosophers.begin(), philosophers.end(), [](philosopher& p) {
agent::wait(&p);
wcout << p.name() << L" ate " << p.times_eaten() << L" times." << endl;
});
}
註解
這個範例會產生下列輸出。
aristotle ate 50 times.
descartes ate 50 times.
hobbes ate 50 times.
socrates ate 50 times.
plato ate 50 times.
編譯程式碼
請複製範例程式碼,並將它貼在 Visual Studio 專案中,或貼在名為 philosophers-join.cpp 的檔案中,然後在 Visual Studio 2010 的 [命令提示字元] 視窗中執行下列命令。
cl.exe /EHsc philosophers-join.cpp
回到頁首