什麼是串流回應?
串流回應會以小型累加區塊傳遞訊息內容。 這種方法可讓他們在訊息展開時檢視和參與訊息,而不是等候整個回應載入,藉此增強用戶體驗。 使用者可以立即開始處理資訊,提升系統的反應速度和互動體驗。 因此,它會將延遲降到最低,並讓用戶在整個通訊過程中更加參與。
串流參考
- OpenAI 串流指南
- OpenAI 聊天完成串流
- OpenAI Assistant 串流
- Azure OpenAI 服務 REST API
語意內核中的串流
相較於用於完整訊息的內容類型,支援 Semantic Kernel 中串流的 AI 服務 會使用不同的內容類型。 這些內容類型特別設計用來處理串流數據的累加本質。 代理程式架構中也會針對類似用途使用相同的內容類型。 這可確保處理串流資訊時,這兩個系統的一致性和效率。
Java 中目前無法使用的功能。
來自 ChatCompletionAgent
的串流回應
從 ChatCompletionAgent
叫用串流回應時,收到完整回應後,ChatHistory
中的 AgentThread
會被更新。 雖然回應是以累加方式串流,但記錄只會記錄完整的訊息。 這可確保 ChatHistory
反映完整的回應,以確保一致性。
// Define agent
ChatCompletionAgent agent = ...;
ChatHistoryAgentThread agentThread = new();
// Create a user message
var message = ChatMessageContent(AuthorRole.User, "<user input>");
// Generate the streamed agent response(s)
await foreach (StreamingChatMessageContent response in agent.InvokeStreamingAsync(message, agentThread))
{
// Process streamed response(s)...
}
// It's also possible to read the messages that were added to the ChatHistoryAgentThread.
await foreach (ChatMessageContent response in agentThread.GetMessagesAsync())
{
// Process messages...
}
from semantic_kernel.agents import ChatCompletionAgent, ChatHistoryAgentThread
# Define agent
agent = ChatCompletionAgent(...)
# Create a thread object to maintain the conversation state.
# If no thread is provided one will be created and returned with
# the initial response.
thread: ChatHistoryAgentThread = None
# Generate the streamed agent response(s)
async for response in agent.invoke_stream(messages="user input", thread=thread)
{
# Process streamed response(s)...
thread = response.thread
}
Java 中目前無法使用的功能。
來自 OpenAIAssistantAgent
的串流回應
從 OpenAIAssistantAgent
調用串流回應時,助理會將對話狀態維持為遠端執行緒。 如有需要,可以從遠端線程讀取訊息。
// Define agent
OpenAIAssistantAgent agent = ...;
// Create a thread for the agent conversation.
OpenAIAssistantAgentThread agentThread = new(assistantClient);
// Create a user message
var message = new ChatMessageContent(AuthorRole.User, "<user input>");
// Generate the streamed agent response(s)
await foreach (StreamingChatMessageContent response in agent.InvokeStreamingAsync(message, agentThread))
{
// Process streamed response(s)...
}
// It's possible to read the messages from the remote thread.
await foreach (ChatMessageContent response in agentThread.GetMessagesAsync())
{
// Process messages...
}
// Delete the thread when it is no longer needed
await agentThread.DeleteAsync();
若要使用現有的 Id
建立線程,請將它傳遞至 的 OpenAIAssistantAgentThread
建構函式:
// Define agent
OpenAIAssistantAgent agent = ...;
// Create a thread for the agent conversation.
OpenAIAssistantAgentThread agentThread = new(assistantClient, "your-existing-thread-id");
// Create a user message
var message = new ChatMessageContent(AuthorRole.User, "<user input>");
// Generate the streamed agent response(s)
await foreach (StreamingChatMessageContent response in agent.InvokeStreamingAsync(message, agentThread))
{
// Process streamed response(s)...
}
// It's possible to read the messages from the remote thread.
await foreach (ChatMessageContent response in agentThread.GetMessagesAsync())
{
// Process messages...
}
// Delete the thread when it is no longer needed
await agentThread.DeleteAsync();
from semantic_kernel.agents import AssistantAgentThread, AzureAssistantAgent, OpenAIAssistantAgent
# Define agent
agent = OpenAIAssistantAgent(...) # or = AzureAssistantAgent(...)
# Create a thread for the agent conversation.
# If no thread is provided one will be created and returned with
# the initial response.
thread: AssistantAgentThread = None
# Generate the streamed agent response(s)
async for response in agent.invoke_stream(messages="user input", thread=thread):
# Process streamed response(s)...
thread = response.thread
# Read the messages from the remote thread
async for response in thread.get_messages():
# Process messages
# Delete the thread
await thread.delete()
若要使用現有的 thread_id
建立線程,請將它傳遞至 的 AssistantAgentThread
建構函式:
from semantic_kernel.agents import AssistantAgentThread, AzureAssistantAgent, OpenAIAssistantAgent
# Define agent
agent = OpenAIAssistantAgent(...) # or = AzureAssistantAgent(...)
# Create a thread for the agent conversation.
# If no thread is provided one will be created and returned with
# the initial response.
thread = AssistantAgentThread(client=client, thread_id="your-existing-thread-id")
# Generate the streamed agent response(s)
async for response in agent.invoke_stream(messages="user input", thread=thread):
# Process streamed response(s)...
thread = response.thread
# Delete the thread
await thread.delete()
Java 中目前無法使用的功能。
使用串流回應處理中繼訊息
串流回應的本質可讓 LLM 模型傳回累加的文字區塊,讓您在 UI 或控制台中快速轉譯,而不需要等待整個回應完成。 此外,呼叫端可能想要處理中繼內容,例如函數調用的結果。 藉由在叫用串流回應時提供回呼函式,即可達成此目的。 回呼函式會接收封裝在 內 ChatMessageContent
的完整訊息。
AzureAIAgent
的回呼文件即將推出。
在on_intermediate_message
內設定agent.invoke_stream(...)
回呼,可以讓呼叫端在形成代理程式的最終回應過程中接收到產生的中繼訊息。
import asyncio
from typing import Annotated
from semantic_kernel.agents import AzureResponsesAgent
from semantic_kernel.contents import ChatMessageContent, FunctionCallContent, FunctionResultContent
from semantic_kernel.functions import kernel_function
# Define a sample plugin for the sample
class MenuPlugin:
"""A sample Menu Plugin used for the concept sample."""
@kernel_function(description="Provides a list of specials from the menu.")
def get_specials(self, menu_item: str) -> Annotated[str, "Returns the specials from the menu."]:
return """
Special Soup: Clam Chowder
Special Salad: Cobb Salad
Special Drink: Chai Tea
"""
@kernel_function(description="Provides the price of the requested menu item.")
def get_item_price(
self, menu_item: Annotated[str, "The name of the menu item."]
) -> Annotated[str, "Returns the price of the menu item."]:
return "$9.99"
# This callback function will be called for each intermediate message,
# which will allow one to handle FunctionCallContent and FunctionResultContent.
# If the callback is not provided, the agent will return the final response
# with no intermediate tool call steps.
async def handle_streaming_intermediate_steps(message: ChatMessageContent) -> None:
for item in message.items or []:
if isinstance(item, FunctionResultContent):
print(f"Function Result:> {item.result} for function: {item.name}")
elif isinstance(item, FunctionCallContent):
print(f"Function Call:> {item.name} with arguments: {item.arguments}")
else:
print(f"{item}")
# Simulate a conversation with the agent
USER_INPUTS = [
"Hello",
"What is the special soup?",
"What is the special drink?",
"How much is it?",
"Thank you",
]
async def main():
# 1. Create the client using OpenAI resources and configuration
client, model = AzureResponsesAgent.setup_resources()
# 2. Create a Semantic Kernel agent for the OpenAI Responses API
agent = AzureResponsesAgent(
ai_model_id=model,
client=client,
instructions="Answer questions about the menu.",
name="Host",
plugins=[MenuPlugin()],
)
# 3. Create a thread for the agent
# If no thread is provided, a new thread will be
# created and returned with the initial response
thread = None
try:
for user_input in user_inputs:
print(f"# {AuthorRole.USER}: '{user_input}'")
first_chunk = True
async for response in agent.invoke_stream(
messages=user_input,
thread=thread,
on_intermediate_message=handle_streaming_intermediate_steps,
):
thread = response.thread
if first_chunk:
print(f"# {response.name}: ", end="", flush=True)
first_chunk = False
print(response.content, end="", flush=True)
print()
finally:
await thread.delete() if thread else None
if __name__ == "__main__":
asyncio.run(main())
下列示範來自代理程式調用程式的範例輸出:
Sample Output:
# AuthorRole.USER: 'Hello'
# Host: Hello! How can I assist you with the menu today?
# AuthorRole.USER: 'What is the special soup?'
Function Call:> MenuPlugin-get_specials with arguments: {}
Function Result:>
Special Soup: Clam Chowder
Special Salad: Cobb Salad
Special Drink: Chai Tea
for function: MenuPlugin-get_specials
# Host: The special soup today is Clam Chowder. Would you like to know more about it or hear about other specials?
# AuthorRole.USER: 'What is the special drink?'
# Host: The special drink today is Chai Tea. Would you like more details or are you interested in ordering it?
# AuthorRole.USER: 'How much is that?'
Function Call:> MenuPlugin-get_item_price with arguments: {"menu_item":"Chai Tea"}
Function Result:> $9.99 for function: MenuPlugin-get_item_price
# Host: The special drink, Chai Tea, is $9.99. Would you like to order one or need information on something else?
# AuthorRole.USER: 'Thank you'
# Host: You're welcome! If you have any more questions or need help with the menu, just let me know. Enjoy your day!
Java 中目前無法使用的功能。