使用指南:
這很重要
這項功能處於實驗階段。 在這個階段的功能正在開發中,在前進到預覽或發行候選階段之前,可能會變更。
概觀
在這個範例中,我們將探索如何設定外掛程式以存取 GitHub API,並提供模板化指示給ChatCompletionAgent,以回答有關 GitHub 儲存庫的問題。 此方法將逐步細分,以突顯編程過程的關鍵部分。 作為工作的一部分,代理程式會在回應中提供文件引文。
串流將用來傳遞代理程序的回應。 這會在工作進行時提供即時更新。
快速入門
繼續進行功能程式代碼撰寫之前,請確定您的開發環境已完全設定和設定。
從建立 主控台 項目開始。 然後,包含下列套件參考,以確保所有必要的相依性都可供使用。
為了從命令列新增套件相依性,請使用命令:dotnet
dotnet add package Azure.Identity
dotnet add package Microsoft.Extensions.Configuration
dotnet add package Microsoft.Extensions.Configuration.Binder
dotnet add package Microsoft.Extensions.Configuration.UserSecrets
dotnet add package Microsoft.Extensions.Configuration.EnvironmentVariables
dotnet add package Microsoft.SemanticKernel.Connectors.AzureOpenAI
dotnet add package Microsoft.SemanticKernel.Agents.Core --prerelease
這很重要
如果在 Visual Studio 中管理 NuGet 套件,請確定 Include prerelease 已核取 。
項目檔 (.csproj) 應包含下列 PackageReference 定義:
<ItemGroup>
<PackageReference Include="Azure.Identity" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration.Binder" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration.UserSecrets" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration.EnvironmentVariables" Version="<stable>" />
<PackageReference Include="Microsoft.SemanticKernel.Agents.Core" Version="<latest>" />
<PackageReference Include="Microsoft.SemanticKernel.Connectors.AzureOpenAI" Version="<latest>" />
</ItemGroup>
Agent Framework 是實驗性的,需要抑制警告。 在項目檔案中(.csproj)將此作為屬性來處理。
<PropertyGroup>
<NoWarn>$(NoWarn);CA2007;IDE1006;SKEXP0001;SKEXP0110;OPENAI001</NoWarn>
</PropertyGroup>
此外,請從GitHubPlugin.cs複製 GitHub 外掛程式和模型 (GitHubModels.cs和 LearnResources) 。 在項目資料夾中新增這些檔案。
首先,建立一個資料夾來保存您的腳本(.py 檔案)和範例資源。 在你的 .py 檔案頂端,包含下列匯入:
import asyncio
import os
import sys
from datetime import datetime
from semantic_kernel.agents import ChatCompletionAgent, ChatHistoryAgentThread
from semantic_kernel.connectors.ai import FunctionChoiceBehavior
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
from semantic_kernel.functions import KernelArguments
from semantic_kernel.kernel import Kernel
# Adjust the sys.path so we can use the GitHubPlugin and GitHubSettings classes
# This is so we can run the code from the samples/learn_resources/agent_docs directory
# If you are running code from your own project, you may not need need to do this.
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from plugins.GithubPlugin.github import GitHubPlugin, GitHubSettings # noqa: E402
此外,從github.py複製 GitHub 外掛程式和模型 (LearnResources)。 在項目資料夾中新增這些檔案。
從建立 Maven 主控台項目開始。 然後,包含下列套件參考,以確保所有必要的相依性都可供使用。
項目 pom.xml 應該包含下列相依性:
<dependencyManagement>
<dependencies>
<dependency>
<groupId>com.microsoft.semantic-kernel</groupId>
<artifactId>semantickernel-bom</artifactId>
<version>[LATEST]</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>com.microsoft.semantic-kernel</groupId>
<artifactId>semantickernel-agents-core</artifactId>
</dependency>
<dependency>
<groupId>com.microsoft.semantic-kernel</groupId>
<artifactId>semantickernel-aiservices-openai</artifactId>
</dependency>
</dependencies>
此外,請從GitHubPlugin.java複製 GitHub 外掛程式和模型 (GitHubModels.java和 LearnResources) 。 在項目資料夾中新增這些檔案。
組態
此範例需要組態設定,才能連線到遠端服務。 您必須定義 OpenAI 或 Azure OpenAI 以及 GitHub 的設定。
備註
如需 GitHub 個人存取令牌的資訊,請參閱: 管理您的個人存取令牌。
# OpenAI
dotnet user-secrets set "OpenAISettings:ApiKey" "<api-key>"
dotnet user-secrets set "OpenAISettings:ChatModel" "gpt-4o"
# Azure OpenAI
dotnet user-secrets set "AzureOpenAISettings:ApiKey" "<api-key>" # Not required if using token-credential
dotnet user-secrets set "AzureOpenAISettings:Endpoint" "<model-endpoint>"
dotnet user-secrets set "AzureOpenAISettings:ChatModelDeployment" "gpt-4o"
# GitHub
dotnet user-secrets set "GitHubSettings:BaseUrl" "https://api.github.com"
dotnet user-secrets set "GitHubSettings:Token" "<personal access token>"
下列類別用於所有 Agent 範例中。 請務必將它包含在專案中,以確保適當的功能。 這個類別可作為後續範例的基礎元件。
using System.Reflection;
using Microsoft.Extensions.Configuration;
namespace AgentsSample;
public class Settings
{
private readonly IConfigurationRoot configRoot;
private AzureOpenAISettings azureOpenAI;
private OpenAISettings openAI;
public AzureOpenAISettings AzureOpenAI => this.azureOpenAI ??= this.GetSettings<Settings.AzureOpenAISettings>();
public OpenAISettings OpenAI => this.openAI ??= this.GetSettings<Settings.OpenAISettings>();
public class OpenAISettings
{
public string ChatModel { get; set; } = string.Empty;
public string ApiKey { get; set; } = string.Empty;
}
public class AzureOpenAISettings
{
public string ChatModelDeployment { get; set; } = string.Empty;
public string Endpoint { get; set; } = string.Empty;
public string ApiKey { get; set; } = string.Empty;
}
public TSettings GetSettings<TSettings>() =>
this.configRoot.GetRequiredSection(typeof(TSettings).Name).Get<TSettings>()!;
public Settings()
{
this.configRoot =
new ConfigurationBuilder()
.AddEnvironmentVariables()
.AddUserSecrets(Assembly.GetExecutingAssembly(), optional: true)
.Build();
}
}
若要開始使用適當的組態來執行範例程序代碼,最快的方式是在專案的根目錄建立 .env 檔案(執行腳本的位置)。
在 .env 檔案中設定以下選項,以適用於 Azure OpenAI 或 OpenAI:
AZURE_OPENAI_API_KEY="..."
AZURE_OPENAI_ENDPOINT="https://<resource-name>.openai.azure.com/"
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME="..."
AZURE_OPENAI_API_VERSION="..."
OPENAI_API_KEY="sk-..."
OPENAI_ORG_ID=""
OPENAI_CHAT_MODEL_ID=""
設定之後,個別的 AI 服務類別會挑選必要的變數,並在具現化期間使用這些變數。
在您的系統中定義下列環境變數。
# Azure OpenAI
AZURE_OPENAI_API_KEY=""
AZURE_OPENAI_ENDPOINT="https://<resource-name>.openai.azure.com/"
AZURE_CHAT_MODEL_DEPLOYMENT=""
# OpenAI
OPENAI_API_KEY=""
OPENAI_MODEL_ID=""
在檔案頂端,您可以依下列方式擷取其值。
// Azure OpenAI
private static final String AZURE_OPENAI_API_KEY = System.getenv("AZURE_OPENAI_API_KEY");
private static final String AZURE_OPENAI_ENDPOINT = System.getenv("AZURE_OPENAI_ENDPOINT");
private static final String AZURE_CHAT_MODEL_DEPLOYMENT = System.getenv().getOrDefault("AZURE_CHAT_MODEL_DEPLOYMENT", "gpt-4o");
// OpenAI
private static final String OPENAI_API_KEY = System.getenv("OPENAI_API_KEY");
private static final String OPENAI_MODEL_ID = System.getenv().getOrDefault("OPENAI_MODEL_ID", "gpt-4o");
撰寫程式碼
這個範例的編碼程式牽涉到:
完整範例程式代碼會在 Final 區段中提供。 如需完整的實作,請參閱該區段。
設定
建立 ChatCompletionAgent之前,必須初始化組態設定、外掛程式和 Kernel。
使用外掛程式的設定來初始化外掛程式。
在這裡,會顯示訊息以指出進度。
Console.WriteLine("Initialize plugins...");
GitHubSettings githubSettings = settings.GetSettings<GitHubSettings>();
GitHubPlugin githubPlugin = new(githubSettings);
gh_settings = GitHubSettings(
token="<PAT value>"
)
kernel.add_plugin(GitHubPlugin(settings=gh_settings), plugin_name="github")
var githubPlugin = new GitHubPlugin(GITHUB_PAT);
現在,初始化一個 Kernel 實例,使用 IChatCompletionService 和先前建立的 GitHubPlugin。
Console.WriteLine("Creating kernel...");
IKernelBuilder builder = Kernel.CreateBuilder();
builder.AddAzureOpenAIChatCompletion(
settings.AzureOpenAI.ChatModelDeployment,
settings.AzureOpenAI.Endpoint,
new AzureCliCredential());
builder.Plugins.AddFromObject(githubPlugin);
Kernel kernel = builder.Build();
kernel = Kernel()
# Add the AzureChatCompletion AI Service to the Kernel
service_id = "agent"
kernel.add_service(AzureChatCompletion(service_id=service_id))
settings = kernel.get_prompt_execution_settings_from_service_id(service_id=service_id)
# Configure the function choice behavior to auto invoke kernel functions
settings.function_choice_behavior = FunctionChoiceBehavior.Auto()
OpenAIAsyncClient client = new OpenAIClientBuilder()
.credential(new AzureKeyCredential(AZURE_OPENAI_API_KEY))
.endpoint(AZURE_OPENAI_ENDPOINT)
.buildAsyncClient();
ChatCompletionService chatCompletion = OpenAIChatCompletion.builder()
.withModelId(AZURE_CHAT_MODEL_DEPLOYMENT)
.withOpenAIAsyncClient(client)
.build();
Kernel kernel = Kernel.builder()
.withAIService(ChatCompletionService.class, chatCompletion)
.withPlugin(KernelPluginFactory.createFromObject(githubPlugin, "GitHubPlugin"))
.build();
代理程式定義
最後,我們已準備好使用其指令、相關聯的 ChatCompletionAgent和預設自變數和執行設定來具現化 Kernel 。 在此情況下,我們想要自動執行任何外掛程式函式。
Console.WriteLine("Defining agent...");
ChatCompletionAgent agent =
new()
{
Name = "SampleAssistantAgent",
Instructions =
"""
You are an agent designed to query and retrieve information from a single GitHub repository in a read-only manner.
You are also able to access the profile of the active user.
Use the current date and time to provide up-to-date details or time-sensitive responses.
The repository you are querying is a public repository with the following name: {{$repository}}
The current date and time is: {{$now}}.
""",
Kernel = kernel,
Arguments =
new KernelArguments(new AzureOpenAIPromptExecutionSettings() { FunctionChoiceBehavior = FunctionChoiceBehavior.Auto() })
{
{ "repository", "microsoft/semantic-kernel" }
}
};
Console.WriteLine("Ready!");
agent = ChatCompletionAgent(
kernel=kernel,
name="SampleAssistantAgent",
instructions=f"""
You are an agent designed to query and retrieve information from a single GitHub repository in a read-only
manner.
You are also able to access the profile of the active user.
Use the current date and time to provide up-to-date details or time-sensitive responses.
The repository you are querying is a public repository with the following name: microsoft/semantic-kernel
The current date and time is: {{$now}}.
""",
arguments=KernelArguments(
settings=settings,
),
)
// Invocation context for the agent
InvocationContext invocationContext = InvocationContext.builder()
.withFunctionChoiceBehavior(FunctionChoiceBehavior.auto(true))
.build()
ChatCompletionAgent agent = ChatCompletionAgent.builder()
.withName("SampleAssistantAgent")
.withKernel(kernel)
.withInvocationContext(invocationContext)
.withTemplate(
DefaultPromptTemplate.build(
PromptTemplateConfig.builder()
.withTemplate(
"""
You are an agent designed to query and retrieve information from a single GitHub repository in a read-only manner.
You are also able to access the profile of the active user.
Use the current date and time to provide up-to-date details or time-sensitive responses.
The repository you are querying is a public repository with the following name: {{$repository}}
The current date and time is: {{$now}}.
""")
.build()))
.withKernelArguments(
KernelArguments.builder()
.withVariable("repository", "microsoft/semantic-kernel-java")
.withExecutionSettings(PromptExecutionSettings.builder()
.build())
.build())
.build();
聊天迴圈
最後,我們能夠協調使用者與 Agent之間的互動。 從建立 ChatHistoryAgentThread 對象開始,以維護交談狀態並建立空迴圈。
ChatHistoryAgentThread agentThread = new();
bool isComplete = false;
do
{
// processing logic here
} while (!isComplete);
thread: ChatHistoryAgentThread = None
is_complete: bool = False
while not is_complete:
# processing logic here
AgentThread agentThread = new ChatHistoryAgentThread();
boolean isComplete = false;
while (!isComplete) {
// processing logic here
}
現在讓我們在上一個迴圈中擷取用戶輸入。 在此情況下,將會忽略空的輸入,而字詞 EXIT 會發出交談已完成的訊號。
Console.WriteLine();
Console.Write("> ");
string input = Console.ReadLine();
if (string.IsNullOrWhiteSpace(input))
{
continue;
}
if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
{
isComplete = true;
break;
}
var message = new ChatMessageContent(AuthorRole.User, input);
Console.WriteLine();
user_input = input("User:> ")
if not user_input:
continue
if user_input.lower() == "exit":
is_complete = True
break
Scanner scanner = new Scanner(System.in);
while (!isComplete) {
System.out.print("> ");
String input = scanner.nextLine();
if (input.isEmpty()) {
continue;
}
if (input.equalsIgnoreCase("exit")) {
isComplete = true;
break;
}
}
若要產生使用者輸入的 Agent 回應,請使用 Arguments 叫用代理程式,以提供指定目前日期和時間的最終範本參數。
然後,Agent 回應會顯示給使用者。
DateTime now = DateTime.Now;
KernelArguments arguments =
new()
{
{ "now", $"{now.ToShortDateString()} {now.ToShortTimeString()}" }
};
await foreach (ChatMessageContent response in agent.InvokeAsync(message, agentThread, options: new() { KernelArguments = arguments }))
{
Console.WriteLine($"{response.Content}");
}
arguments = KernelArguments(
now=datetime.now().strftime("%Y-%m-%d %H:%M")
)
async for response in agent.invoke(messages=user_input, thread=thread, arguments=arguments):
print(f"{response.content}")
thread = response.thread
var options = AgentInvokeOptions.builder()
.withKernelArguments(KernelArguments.builder()
.withVariable("now", OffsetDateTime.now())
.build())
.build();
for (var response : agent.invokeAsync(message, agentThread, options).block()) {
System.out.println(response.getMessage());
agentThread = response.getThread();
}
最終
將所有步驟結合在一起,我們有此範例的最終程序代碼。 以下提供完整的實作。
請嘗試使用這些建議的輸入:
- 我的使用者名稱為何?
- 描述存放庫。
- 描述儲存庫中新建立的問題。
- 列出過去一週內關閉的前 10 個問題。
- 這些問題的標籤方式如何?
- 列出 「代理程式」標籤最近開啟的 5 個問題
using System;
using System.Threading.Tasks;
using Azure.Identity;
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Agents;
using Microsoft.SemanticKernel.ChatCompletion;
using Microsoft.SemanticKernel.Connectors.AzureOpenAI;
using Plugins;
namespace AgentsSample;
public static class Program
{
public static async Task Main()
{
// Load configuration from environment variables or user secrets.
Settings settings = new();
Console.WriteLine("Initialize plugins...");
GitHubSettings githubSettings = settings.GetSettings<GitHubSettings>();
GitHubPlugin githubPlugin = new(githubSettings);
Console.WriteLine("Creating kernel...");
IKernelBuilder builder = Kernel.CreateBuilder();
builder.AddAzureOpenAIChatCompletion(
settings.AzureOpenAI.ChatModelDeployment,
settings.AzureOpenAI.Endpoint,
new AzureCliCredential());
builder.Plugins.AddFromObject(githubPlugin);
Kernel kernel = builder.Build();
Console.WriteLine("Defining agent...");
ChatCompletionAgent agent =
new()
{
Name = "SampleAssistantAgent",
Instructions =
"""
You are an agent designed to query and retrieve information from a single GitHub repository in a read-only manner.
You are also able to access the profile of the active user.
Use the current date and time to provide up-to-date details or time-sensitive responses.
The repository you are querying is a public repository with the following name: {{$repository}}
The current date and time is: {{$now}}.
""",
Kernel = kernel,
Arguments =
new KernelArguments(new AzureOpenAIPromptExecutionSettings() { FunctionChoiceBehavior = FunctionChoiceBehavior.Auto() })
{
{ "repository", "microsoft/semantic-kernel" }
}
};
Console.WriteLine("Ready!");
ChatHistoryAgentThread agentThread = new();
bool isComplete = false;
do
{
Console.WriteLine();
Console.Write("> ");
string input = Console.ReadLine();
if (string.IsNullOrWhiteSpace(input))
{
continue;
}
if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
{
isComplete = true;
break;
}
var message = new ChatMessageContent(AuthorRole.User, input);
Console.WriteLine();
DateTime now = DateTime.Now;
KernelArguments arguments =
new()
{
{ "now", $"{now.ToShortDateString()} {now.ToShortTimeString()}" }
};
await foreach (ChatMessageContent response in agent.InvokeAsync(message, agentThread, options: new() { KernelArguments = arguments }))
{
// Display response.
Console.WriteLine($"{response.Content}");
}
} while (!isComplete);
}
}
import asyncio
import os
import sys
from datetime import datetime
from semantic_kernel.agents import ChatCompletionAgent, ChatHistoryAgentThread
from semantic_kernel.connectors.ai import FunctionChoiceBehavior
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
from semantic_kernel.functions import KernelArguments
from semantic_kernel.kernel import Kernel
# Adjust the sys.path so we can use the GitHubPlugin and GitHubSettings classes
# This is so we can run the code from the samples/learn_resources/agent_docs directory
# If you are running code from your own project, you may not need need to do this.
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from plugins.GithubPlugin.github import GitHubPlugin, GitHubSettings # noqa: E402
async def main():
kernel = Kernel()
# Add the AzureChatCompletion AI Service to the Kernel
service_id = "agent"
kernel.add_service(AzureChatCompletion(service_id=service_id))
settings = kernel.get_prompt_execution_settings_from_service_id(service_id=service_id)
# Configure the function choice behavior to auto invoke kernel functions
settings.function_choice_behavior = FunctionChoiceBehavior.Auto()
# Set your GitHub Personal Access Token (PAT) value here
gh_settings = GitHubSettings(token="") # nosec
kernel.add_plugin(plugin=GitHubPlugin(gh_settings), plugin_name="GithubPlugin")
current_time = datetime.now().isoformat()
# Create the agent
agent = ChatCompletionAgent(
kernel=kernel,
name="SampleAssistantAgent",
instructions=f"""
You are an agent designed to query and retrieve information from a single GitHub repository in a read-only
manner.
You are also able to access the profile of the active user.
Use the current date and time to provide up-to-date details or time-sensitive responses.
The repository you are querying is a public repository with the following name: microsoft/semantic-kernel
The current date and time is: {current_time}.
""",
arguments=KernelArguments(settings=settings),
)
thread: ChatHistoryAgentThread = None
is_complete: bool = False
while not is_complete:
user_input = input("User:> ")
if not user_input:
continue
if user_input.lower() == "exit":
is_complete = True
break
arguments = KernelArguments(now=datetime.now().strftime("%Y-%m-%d %H:%M"))
async for response in agent.invoke(messages=user_input, thread=thread, arguments=arguments):
print(f"{response.content}")
thread = response.thread
if __name__ == "__main__":
asyncio.run(main())
您可能會在存放庫中找到完整的 程式代碼,如上所示。
import com.microsoft.semantickernel.Kernel;
import com.microsoft.semantickernel.agents.AgentInvokeOptions;
import com.microsoft.semantickernel.agents.AgentThread;
import com.microsoft.semantickernel.agents.chatcompletion.ChatCompletionAgent;
import com.microsoft.semantickernel.agents.chatcompletion.ChatHistoryAgentThread;
import com.microsoft.semantickernel.aiservices.openai.chatcompletion.OpenAIChatCompletion;
import com.microsoft.semantickernel.contextvariables.ContextVariableTypeConverter;
import com.microsoft.semantickernel.functionchoice.FunctionChoiceBehavior;
import com.microsoft.semantickernel.implementation.templateengine.tokenizer.DefaultPromptTemplate;
import com.microsoft.semantickernel.orchestration.InvocationContext;
import com.microsoft.semantickernel.orchestration.PromptExecutionSettings;
import com.microsoft.semantickernel.plugin.KernelPluginFactory;
import com.microsoft.semantickernel.samples.plugins.github.GitHubModel;
import com.microsoft.semantickernel.samples.plugins.github.GitHubPlugin;
import com.microsoft.semantickernel.semanticfunctions.KernelArguments;
import com.microsoft.semantickernel.semanticfunctions.PromptTemplateConfig;
import com.microsoft.semantickernel.services.chatcompletion.AuthorRole;
import com.microsoft.semantickernel.services.chatcompletion.ChatCompletionService;
import com.microsoft.semantickernel.services.chatcompletion.ChatMessageContent;
import com.azure.ai.openai.OpenAIAsyncClient;
import com.azure.ai.openai.OpenAIClientBuilder;
import com.azure.core.credential.AzureKeyCredential;
import java.time.OffsetDateTime;
import java.util.Scanner;
public class CompletionAgent {
// Azure OpenAI
private static final String AZURE_OPENAI_API_KEY = System.getenv("AZURE_OPENAI_API_KEY");
private static final String AZURE_OPENAI_ENDPOINT = System.getenv("AZURE_OPENAI_ENDPOINT");
private static final String AZURE_CHAT_MODEL_DEPLOYMENT = System.getenv().getOrDefault("AZURE_CHAT_MODEL_DEPLOYMENT", "gpt-4o");
// GitHub Personal Access Token
private static final String GITHUB_PAT = System.getenv("GITHUB_PAT");
public static void main(String[] args) {
System.out.println("======== ChatCompletion Agent ========");
OpenAIAsyncClient client = new OpenAIClientBuilder()
.credential(new AzureKeyCredential(AZURE_OPENAI_API_KEY))
.endpoint(AZURE_OPENAI_ENDPOINT)
.buildAsyncClient();
var githubPlugin = new GitHubPlugin(GITHUB_PAT);
ChatCompletionService chatCompletion = OpenAIChatCompletion.builder()
.withModelId(AZURE_CHAT_MODEL_DEPLOYMENT)
.withOpenAIAsyncClient(client)
.build();
Kernel kernel = Kernel.builder()
.withAIService(ChatCompletionService.class, chatCompletion)
.withPlugin(KernelPluginFactory.createFromObject(githubPlugin, "GitHubPlugin"))
.build();
InvocationContext invocationContext = InvocationContext.builder()
.withFunctionChoiceBehavior(FunctionChoiceBehavior.auto(true))
.withContextVariableConverter(new ContextVariableTypeConverter<>(
GitHubModel.Issue.class,
o -> (GitHubModel.Issue) o,
o -> o.toString(),
s -> null))
.build();
ChatCompletionAgent agent = ChatCompletionAgent.builder()
.withName("SampleAssistantAgent")
.withKernel(kernel)
.withInvocationContext(invocationContext)
.withTemplate(
DefaultPromptTemplate.build(
PromptTemplateConfig.builder()
.withTemplate(
"""
You are an agent designed to query and retrieve information from a single GitHub repository in a read-only manner.
You are also able to access the profile of the active user.
Use the current date and time to provide up-to-date details or time-sensitive responses.
The repository you are querying is a public repository with the following name: {{$repository}}
The current date and time is: {{$now}}.
""")
.build()))
.withKernelArguments(
KernelArguments.builder()
.withVariable("repository", "microsoft/semantic-kernel-java")
.withExecutionSettings(PromptExecutionSettings.builder()
.build())
.build())
.build();
AgentThread agentThread = new ChatHistoryAgentThread();
boolean isComplete = false;
Scanner scanner = new Scanner(System.in);
while (!isComplete) {
System.out.print("> ");
String input = scanner.nextLine();
if (input.isEmpty()) {
continue;
}
if (input.equalsIgnoreCase("EXIT")) {
isComplete = true;
break;
}
var message = new ChatMessageContent<>(AuthorRole.USER, input);
var options = AgentInvokeOptions.builder()
.withKernelArguments(KernelArguments.builder()
.withVariable("now", OffsetDateTime.now())
.build())
.build();
for (var response : agent.invokeAsync(message, agentThread, options).block()) {
System.out.println(response.getMessage());
agentThread = response.getThread();
}
}
}
}